Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $A=x^{2011}+x^{2010}+....+x+1$
$Ax=x^{2012}+x^{2011}+...+x^2+x$
$\Rightarrow Ax-A=x^{2012}-1$
$\Rightarrow A=\frac{x^{2012}-1}{x-1}$
$B=x^{502}+x^{501}+...+x+1$
$Bx=x^{503}+x^{502}+....+x^2+x$
$\Rightarrow Bx-B=x^{503}-1$
$\Rightarrow B=\frac{x^{503}-1}{x-1}$
Khi đó: $A:B = \frac{x^{2012}-1}{x-1}: \frac{x^{503}-1}{x-1}=\frac{x^{2012}-1}{x^{503}-1}=\frac{(x^{503})^4-1}{x^{503}-1}$
Đặt $x^{503}=a$ thì:
$A:B=\frac{a^4-1}{a-1}=a^3+a^2+a+1$
$\Rightarrow A\vdots B$
a.251001
b.8281
c.998001
d.7921
e.249999
f.8096
g.10000
h.1080
Ta thấy có chữ số tận cùng là 2
thì chữ 21 số tận cùng bằng 3
35 thì chũ số tận cùng bằng 4
49 thì chũ số tận cùng bằng 2(theo tự luận trên và tự suy ra)
5022001 mỗi số trên có số tận cùng là *** cuối của cơ số.
Vậy số tận cùng của dãy số 2+3+4+...+2
Sẽ=2+3+4+...+2(có điều cần chứng minh đây)
Ta tìm trong dãy sẽ có 2+3+4+...+2số tận cùng bao giờ cũng bằng 0;theo tính chất trên thì tận
cùng của số là 1; có chữ số tận cùng là 1 theo *** của cơ số; có chữ số tận cùng là 0 theo *** cơ số.
Vậy Ta có tổng chữ số tận cùng của dãy số bây giờ là:
2+3+4+...+0+1...+0+1+2
Nhìn vào đay ta thấy một điều là mỗi dãy trên đã có quy luât:
1+...+0;1+...+0(Có 10 số mỗi vế)(tổng mỗi vế là 45)Ta chuyển tổng chữ số tận cùng cua dãy như
sau để cho dễ hiểu:1+2+...+0+2(vậy thừa ra 2)
Vậy ta tính số số hạng của dãy số trên trước (tạm bỏ 2)(tức bỏ tạm 502^2001) để ghép thành các
vế cho dễ.
(501-2):1+1=500(số hạng)
Mà mỗi vế ở trên có 10 chữ số vậy có số vế là:
500:10=50(vế)(mà mỗi vế có tổng bằng 45)
Vậy tổng chũ số tận cùng của dãy số trân làthêm chữ số tận cùng 2 nữa vì lúc nãy thử bỏ):
45.50+2=2252
Vậy chữ số tận cùng của 2252 là 2 tức là chữ số tận cùng của dãy trên là:2
tick đúng mình nhaaaaaaaaaaaa
a) \(501^2=\left(500+1\right)^2=250000+1000+1=251001\)
b) \(99^2=\left(100-1\right)^2=10000-200+1=9801\)
c) \(76.42=\left(59+17\right)\left(59-17\right)=59^2-17^2=3481-289=3192\)
Bài làm :
\(501^2=\left(500+1\right)^2=250000+1000+1=251001\)
\(b,99^2=\left(100-1\right)^2=10000-200+1=9801\)
\(c,76.42=\left(59+17\right)\left(59-17\right)=59^2-17^2=3192\)
Học tốt
xét \(VT=\frac{2}{2}\left(\frac{1}{2.4}+\frac{1}{4.6}+......+\frac{1}{2n.\left(2n+2\right)}\right)\) (1)
\(=\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+.......+\frac{2}{2n\left(2n+2\right)}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+.......+\frac{1}{2n}-\frac{1}{2n+2}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)=\frac{1}{4}-\frac{1}{2\left(2n+2\right)}\)
\(=\frac{1}{4}-\frac{1}{4n+4}\)
mà theo bài ra (1) = \(\frac{502}{2009}\)
<=>\(\frac{1}{4}-\frac{1}{4n+4}=\frac{502}{2009}\)
<=>\(\frac{1}{4n+4}=\frac{1}{4}-\frac{502}{2009}\)
<=>\(\frac{1}{4n+4}=\frac{1}{8036}\)
<=> 4n+4=8036
<=> 4n=8032
<=> n=2008
=) \(\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2n\left(2n+2\right)}\right)=\frac{502}{2009}\)
=) \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2n}-\frac{1}{2n+2}\right)=\frac{502}{2009}\)
=) \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)=\frac{502}{2009}\)
=) \(\frac{1}{2}-\frac{1}{2n+2}=\frac{502}{2009}:\frac{1}{2}=\frac{1018}{2009}\)
=) \(\frac{1}{2n+2}=\frac{1}{2}-\frac{1018}{2009}=\frac{-27}{4018}\)
=) \(\frac{-1}{-\left(2n+2\right)}=\frac{-27}{4018}\)
=) \(\frac{-27}{27.-\left(2n+2\right)}=\frac{-27}{4018}\)
=) \(27.-\left(2n+2\right)=4018\)
=) \(-\left(2n+2\right)=4018:27=\frac{4018}{27}\)
=) \(2n+2=\frac{-4018}{27}\)
=) \(2n=\frac{-4018}{27}-2=\frac{-4072}{27}\)
=) \(n=\frac{-4072}{27}:2=\frac{-2036}{27}\)
\(\)