![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa đề:
Chứng minh $1+4+4^2+4^3+.....+4^{2012}\vdots 21$
Lời giải:
Đặt $A=1+4+4^2+4^3+....+4^{2012}$
$=(1+4+4^2)+(4^3+4^4+4^5)+.....+(4^{2010}+4^{2011}+4^{2012})$
$=(1+4+4^2)+4^3(1+4+4^2)+....+4^{2010}(1+4+4^2)$
$=(1+4+4^2)(1+4^3+...+4^{2010})$
$=21(1+4^3+....+4^{2010})$
$\Rightarrow A\vdots 21$
Ta có đpcm.
![](https://rs.olm.vn/images/avt/0.png?1311)
A=4+4^2+4^3+...+4^50
A=(4+4^2)+(4^3+4^4)+...+(4^49+4^50)
A=(4+4^2)+4^2(4+4^2)+...+4^48(4+4^2)
A=4+4^2(4^2 +4^4+...+4^48)\(⋮\)10 (vì 4+4^2=20\(⋮\)10)
Vậy A\(⋮\)10
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Ta có:
\(72^{45}-72^{44}=72^{44}.\left(72-1\right)=72^{44}.71\)
\(72^{44}-72^{43}=72^{43}.\left(72-1\right)=72^{43}.71\)
Vì \(72^{44}.71>72^{43}.71\)
\(\Rightarrow72^{45}-72^{44}>72^{44}-72^{43}\)
\(A = 1 + 2 + 2^2 + 2^3+ ... + 2^{63}\)
\(2A=2+2^2+2^3+...+2^{63}+2^{64}\)
\(2A-A=2+2^2+2^3+...+2^{63}+2^{64}-\left(1+2+2^2+2^3+...+2^{63}\right)\)
\(\Rightarrow A=2^{64}-1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(\Leftrightarrow x+11-15+x+20=0\)
\(\Leftrightarrow2x+16=0\)
\(\Leftrightarrow x=-8\)
2) \(\Leftrightarrow2x-16+x-13=16\)
\(\Leftrightarrow3x-45=0\)
\(\Leftrightarrow x=15\)
Những câu dưới bạn làm tương tự như vậy nhé
1)(x+11)–(15–x) =–20
x+11 - 15 + x = -20
x + ( 11 -15 ) = -20
x + ( -4 ) = -20
x = -20 - ( -4 )
x = -16
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Ta có : 7245 - 7243 = 7243.(722 - 1)
7244 - 742 = 742.(722 - 1)
Vì 7243 > 7242
=> 7243.(722 - 1) > 742.(722 - 1)
=> 7245 - 7243 > 7244 - 742
2) Giải
\(M=\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{50}}\)
\(4M=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{49}}\)
Lấy 4M trừ M theo vế ta có :
\(4M-M=\left(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{49}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{50}}\right)\)
\(3M=1-\frac{1}{49}\)
\(M=\left(1-\frac{1}{49}\right):3\)
\(=\frac{1}{3}-\frac{1}{147}< \frac{1}{3}\)
Vậy \(M< \frac{1}{3}\left(\text{đpcm}\right)\)
12+3+4+44
=19+44
=1+44
=45
Ai tick mik mik tick lại cho