K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 5 2024

Lời giải:

$1234\equiv 1\pmod 9$

$\Rightarrow 1234^{2023}\equiv 1^{2023}\equiv 1\pmod 9$

$\Rightarrow 1234^{2023}-1\equiv 1-1\equiv 0\pmod 9$

Vậy $1234^{2023}-1$ chia 9 dư 0

16 tháng 1 2020

mình đang cần gấp, tầm khoảng 30 phút nữa là phải nộp. bạn nào xong sớm mình sẽ cho. Thanks!

3 tháng 8 2017

a) chia 15 dư 13

b) chia 63 dư 59

k mik nhé

3 tháng 8 2017

a ) dư 3

b ) dư 59

các bạn nha

29 tháng 2 2016

  A= 4p+3 = 17m+9= 19n+13 
A+25 =4p+28= 17m+34 =19n+38 
nhận thấy A+25 đồng thời chia hết cho 4, 17 và 19 
vậy A+25 chia hết cho 4.17.19 =1292 
A chia 1292 dư (1292-25) = 1267

29 tháng 2 2016

 A= 4p+3 = 17m+9= 19n+13 
A+25 =4p+28= 17m+34 =19n+38 
nhận thấy A+25 đồng thời chia hết cho 4, 17 và 19 
vậy A+25 chia hết cho 4.17.19 =1292 
A chia 1292 dư (1292-25) = 1267

29 tháng 2 2016

Gọi số cần tìm là a

Ta có:

          a:4 dư 3

         a:17 dư 9

        a:19 dư 13

Nên a+25 chia hết cho 4;17;19

Vì 4 ;17;19 là các số đôi một nguyên tố cùng nhau nên a+25 chia hết cho:   4x17x19=1292

Suy ra: a chia 1292 dư 1267

Tui chỉ làm được cho số 1292 thôi chứ không làm được 1992

29 tháng 2 2016

A= 4p+3 = 17m+9= 19n+13 
A+25 =4p+28= 17m+34 =19n+38 
nhận thấy A+25 đồng thời chia hết cho 4, 17 và 19 
vậy A+25 chia hết cho 4.17.19 =1292 
A chia 1292 dư (1292-25) = 1267