\(1^2+3^2+5^2+...+97^2+99^2\)

ai nhanh mik tick cho mik đang cần gấp

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2020

Đặt A = 12 + 32 + 52 + ... + 972 + 992

Đặt B = 22 + 42 + 62 + ... + 982

Khi đó A + B = 12 + 22 + 32 + ... + 982 + 992

                      = 1.1 + 2.2 + 3.3 + ... + 98.98 + 99.99

                      = 1.(2 - 1) + 2(3 - 1) + 3(4 - 1) + ... + 98(99 - 1) + 99(100 - 1)

                      = 1.2 + 2.3 + 3.4 + .... + 98.99 + 99.100 - (1 + 2 + 3 + ... + 99)

                       = 1.2 + 2.3 + 3.4 + .... + 98.99 + 99.100 - 99.(99 + 1):2

                       = 1.2 + 2.3 + 3.4 + .... + 98.99 + 99.100 -  5050

Đặt C = 1.2 + 2.3 + 3.4 + .... + 98.99 + 99.100 

=> 3C = 1.2.3 + 2.3.3 + 3.4.3 + ... + 98.99.3 + 99.100.3

   3C   = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 98.99.(100 - 97) + 99.100.(101 - 98)

   3C   = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 98.99.100 - 97.98.99 + 99.100.101 - 98.99.100

   3C = 99.100.101

     C = 99.100.101 : 3 = 333 300

Khi đó A+ B = C - 5050 = 333 300 - 5050 = 328 250

Lại có B = 22 + 42 + 62 + ... + 982 

              = 22(12 + 22 + 32 + ... + 492)

             = 4(12 + 22 + 32 + ... + 492)

  Đặt D = 12 + 22 + 32 + ... + 492

             = 1.1 + 2.2 + 3.3 + ... + 49.49

             = 1.(2 - 1) + 2.(3 - 1) + 3.(4 - 1) + ... + 49(50 - 1)

             = 1.2. + 2.3 + 3.4 + ... + 49.50 - (1 + 2 + 3 + 4 + ... + 49)

              = 1.2. + 2.3 + 3.4 + ... + 49.50 - 49.(49 + 1) : 2

              = 1.2 + 2.3 + 3.4 + ... + 49.50 - 1225

  Khi đó : 1.2 + 2.3 + 3.4 + ... + 49.50 

= (1.2.3 + 2.3.3 + ... + 49.50.3) : 3

= [1.2.3 + 2.3.(4 - 1) + ... + 49.50(51 - 48)]  : 3

= (1.2.3 + 2.3.4 - 1.2.3 + ... + 49.50.51 - 48.49.50) : 3

= 49.50.51 : 3 

= 41650

Khi đó D = 41650 - 1225 = 40425

 Khi đó B = 40425 x 4 = 161700

Lại có : A + B = 328250

=> A + 161700 = 328250

=> A = 166550

Vậy 12 + 32 + 52 + ... + 972 + 992 = 166550

25 tháng 6 2019

A = 1^2 + 3^2 + ... + 97^2 + 99^2

= 1.1 + 3.3 + ... + 97.97 + 99.99

> 1.2 + 2.3 + ... + 97.98 + 98.99

= 1.99 = 99

Suy ra A > 1

20 tháng 7 2016

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x+1}{2}=\frac{y+3}{4}\)\(=\frac{z+5}{6}\)\(=\frac{2.\left(x+1\right)+3.\left(y+3\right)+4.\left(z+5\right)}{2.2+3.4+4.6}\)

\(=\frac{2x+2+3y+9+4z+20}{4+12+24}\)\(=\frac{\left(2x+3y+4z\right)+\left(2+9+20\right)}{40}\)

\(=\frac{9+31}{40}=\frac{40}{40}=1\)

Cứ thế là tìm x+1 rồi tìm x

                    y+3           y

                    x+5           z

    

3 tháng 3 2020

giúp mik với

\(\frac{2-x}{x+3}=\frac{6}{5}\)

<=>\(5\left(2-x\right)=6\left(x+3\right)\)

<=>\(10-5x=6x+18\)

<=>\(\left(-5x\right)-6x=18-10\)

<=>\(-11x=8\)

<=>\(x=\frac{-8}{11}\)

26 tháng 8 2018

a) \(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x+3}{97}+\frac{x+4}{96}\)

\(\Rightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1=\frac{x+3}{97}+1+\frac{x+4}{96}+1\)

\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}-\frac{x+100}{97}-\frac{x+100}{96}=0\)

\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)

Vì 1/99 + 1/98 - 1/97 - 1/96 khác 0

=> x + 100 = 0 => x = -100

b) \(\frac{x-3}{47}+\frac{x-2}{48}=\frac{x-1}{49}+1\)

\(\Rightarrow\frac{x-3}{47}-1+\frac{x-2}{48}-1=\frac{x-1}{49}+1-2\)

\(\Rightarrow\frac{x-50}{47}+\frac{x-50}{48}-\frac{x-50}{49}=0\)

\(\Rightarrow\left(x-50\right)\left(\frac{1}{47}+\frac{1}{48}-\frac{1}{49}\right)=0\)

Vì 1/47 + 1/48 - 1/49 khác 0

Nên x -50 = 0 => x = 50

11 tháng 9 2018

từ đề bài ta có \(\frac{A}{B}=\frac{\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)

\(\frac{A}{B}=\frac{\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{1}{9}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)

\(\frac{A}{B}=\frac{\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}+\frac{10}{10}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)

\(\frac{A}{B}=\frac{10\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)

\(\frac{A}{B}=10\)