Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/2.3+1/3.4+1/4.5+..+1/2014.2015
A=1/2-1/3+1/3-1/4+1/4-1/5+...+1/2014-1/2015
A=1/2-1/2015
A=2013/4030
1/2.3+1/3.4+1/4.5+...+1/99.100
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)
=\(\frac{1}{2}-\frac{1}{100}=\frac{50}{100}-\frac{1}{100}=\frac{49}{100}\)
=1/2-1/3+1/3-1/4+1/4-1/5+......+1/99-1/100
=1/2-1/100
=49/100
1/2*3+1/3*4+...+1/99*100
=1/2-1/3+1/3-1/4+...+1/99-1/100
=50/100-1/100=49/100
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
Ta có: 1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100
= 1/2-1/100
= 50/100-1/100
= 49/100
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(A=1-\frac{1}{6}\)
\(A=\frac{5}{6}\)
_Chúc bạn học tốt_
Ta có : \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(=1-\frac{1}{5}=\frac{4}{5}\)
Cho A=1/1.2 + 1/2.3 + + 1/ 3.4+...+1/49.50 ; B = 1.2+2.3+3.4+4.5+5.6+...+49.50
Tính 50 mủ 2 A – B/17
\(A=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{25\cdot26}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{25}-\frac{1}{26}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{26}\)
\(\Rightarrow A=\frac{12}{26}=\frac{6}{13}\)
=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6
=1/1+-1/2+1/2+-1/3+1/3+-1/4+1/4+-1/5+1/5+-1/6
=1/1+-1/6=5/6
\(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{89\cdot90}\\ =\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{89}-\dfrac{1}{90}\\ =\dfrac{1}{2}-\dfrac{1}{90}=\dfrac{22}{45}\)
\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{89.90}\\ =\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{89}-\dfrac{1}{90}\\ =\dfrac{1}{2}-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-...-\left(\dfrac{1}{89}-\dfrac{1}{89}\right)-\dfrac{1}{90}\\ =\dfrac{1}{2}-0-0-...-0-\dfrac{1}{90}\\ =\dfrac{1}{2}-\dfrac{1}{90}\\ =\dfrac{45}{90}-\dfrac{1}{90}\\ =\dfrac{44}{90}\\ =\dfrac{22}{45}\)