Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 1 + 22 + 24 + ....... + 22016 + 22018
Nhân cả hai vế của A với 22 ta được :
22A = 22(1 + 22 + 24 + ....... + 22016 + 22018)
4A = 22 + 24 + 26 + ....... + 22018 + 22020
Từ cả 2 vế của 4A cho A ta được :
4A - A = (22 + 24 + 26 + ....... + 22018 + 22020) - (1 + 22 + 24 + ....... + 22016 + 22018)
3A = 22020 - 1
\(\Rightarrow A=\frac{2^{2020}-1}{3}\)
(X+1)6 + (y-1)4 = - Z2 suy ra (X+1)6= 0, (y-1)4=0, -Z2=0
X=-1, Y=1, z=0. Thay x, y, z vào biểu thức P ta được: P= 2017
\(C=\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)2017+1\)
\(=\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)2018-\left(2018^{2019}+2018^{2018}+...+2018\right)-1\)
\(=\left(2018^{2020}+2018^{2019}+...+2018^3+2018^2\right)-\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)+1\)\(=2018^{2020}-2018+1\)
\(=2018^{2020}-2017\)
a) \(2A=2+2^2+...+2^{2018}\)
\(A=1+2+2^2+..+2^{2017}\)
=> \(A=2^{2018}-1< 2^{2018}\)
=> A < B
b) \(3B=1+\frac{1}{3}+...+\frac{1}{3^{98}}\)
\(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
=> \(2B=3B-B=1-\frac{1}{3^{99}}\)
=> \(B=\frac{1}{2}-\frac{1}{3^{99}\cdot2}< \frac{1}{2}\)( đpcm )
Đặt \(A=\frac{2^{2017}+1}{2^{2018}+1}\Rightarrow2A=\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)
\(B=\frac{2^{2018}+1}{2^{2019}+1}\Rightarrow2B=\frac{2^{2019}+2}{2^{2019}+1}=\frac{2^{2019}+1+1}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)
Vì \(2^{2019}+1>2^{2018}+1\Rightarrow\frac{1}{2^{2019}+1}< \frac{1}{2^{2018}+1}\)
\(\Rightarrow2A>2B\Rightarrow A>B\)
Đặt G=2^2017+2^2016+...+2+1
=>2G=2^2018+2^2017+...+2^2+2
=>G=2^2018-1
=>H=2^2018-2^2018+1=1
=>2018^H=2018