Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{x\cdot\left(x+1\right)\cdot\left(x+2\right)}=\frac{2018}{2019}\)
\(=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot3}+...+\frac{1}{x\cdot\left(x+1\right)}-\frac{1}{\left(x+1\right)\cdot\left(x+2\right)}=\frac{2018}{2019}\)
\(=1-\frac{1}{\left(x+1\right)\cdot\left(x+2\right)}=\frac{2018}{2019}\)
\(\Rightarrow\frac{1}{\left(x+1\right)\cdot\left(x+2\right)}=1-\frac{2018}{2019}\)
\(\Rightarrow\frac{1}{\left(x+1\right)\cdot\left(x+2\right)}=\frac{2019}{2019}-\frac{2018}{2019}=\frac{1}{2019}\)
Đến đây bn tự tính nhé !!
dssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
\(=\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x.\left(x+1\right)}=\frac{2018}{2019}\)
\(\Rightarrow2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{x.\left(x+1\right)}\right)=\frac{2018}{2019}\)
\(\Rightarrow2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2018}{2019}\)
\(\Rightarrow2.\left(1-\frac{1}{x+1}\right)=\frac{2018}{2019}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{2018}{2019.2}\)
Tự làm nốt
\(B=x-\left(y-2x\right)-\left(x-y\right)+\left(x-2z\right)\)
\(\Leftrightarrow B=x-y+2x-x+y+x-2z\)
\(\Leftrightarrow B=\left(x+2x-x+x\right)+\left(y-y\right)+2z\)
\(\Leftrightarrow B=3x+2z\)
Thay x=1/2018 ; z=1/2020 vào B ta có :
\(B=\frac{3}{2018}+\frac{2}{2020}\)
Ra kết quả số lớn quá :v
Ta có : \(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{x\left(x+1\right)}=\frac{2018}{2019}\)
\(\Rightarrow\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+...+\left(\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2018}{2019}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{2018}{2019}\)
\(\Rightarrow\frac{1}{x+1}=1-\frac{2018}{2019}=\frac{1}{2019}\)
\(\Rightarrow x+1=2019\)
\(\Rightarrow x=2018\)
Vậy x = 2018
Nhớ t.i.c.k cho mình nha!
Chỗ \(x(x+1)\Rightarrow\frac{1}{x(x+1)}\) nhé
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x(x+1)}=\frac{2018}{2019}\)
\(\Rightarrow\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x(x+1)}=\frac{2018}{2019}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2018}{2019}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{2018}{2019}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2019}\Leftrightarrow x+1=2019\Leftrightarrow x=2018\)