Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}\)+\(\frac{1}{6}\)+\(\frac{1}{12}\)+....+\(\frac{1}{x\left(x+1\right)}\)=\(\frac{2015}{2016}\)
\(\frac{1}{1x2}\)+\(\frac{1}{2x3}\)+\(\frac{1}{3x4}\)+.....+\(\frac{1}{x\left(x+1\right)}\)=\(\frac{2015}{2016}\)
\(1\)-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-.....+\(\frac{1}{x}\)-\(\frac{1}{x+1}\)=\(\frac{2015}{2016}\)
1-\(\frac{1}{x+1}\) = \(\frac{2015}{2016}\)
\(\frac{1}{x+1}\) =1- \(\frac{2015}{2016}\)
\(\frac{1}{x+1}\) = \(\frac{1}{2016}\)
\(\Rightarrow\)x + 1= 2016
\(\Rightarrow\)x = 2015
\(\frac{1}{2}+\frac{1}{6}+.....+\frac{1}{x\left(x+1\right)}=\frac{2015}{2016}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{x\left(x+1\right)}=\frac{2015}{2016}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2016}\)
\(=1-\frac{1}{x+1}=\frac{2015}{2016}\)
\(=\frac{1}{x+1}=\frac{1}{2016}\)
=> x + 1 = 2016
=> x =2015
=>1- 1/2 + 1/2 - 1/3+.....+1/x - 1/(x+1) = 2008/2009
=>1 - 1/(x+1) = 2008/2009
=>1 - 1/(x+1) =1-1/1009
=>1/(x+1)=1/2009
=>x+1=2009
=>x=2008.Vậy x=2008
VẾ TRÁI LÀ:
A=1/2.3+1/3.2+1/4.5+...+1/x[x+1]
A=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/n-1/n+1
A=1-1/n+1
1-1/n+1=2015/2016
1/n+1=1-2015/2016
1/n+1=1/2016
n=2016-1
n=2015
Vế trái là
S=1/2+1/6+1/12+1/20+..+1/x(x+1)
S=1/1.2+1/2.3+1/3.4+1/4.5+...+1/x.(x+1)
S=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/x.(x+1)
S=1-1/(x+1)=Vế phải=2015/2016
<=>1-1/(x+1)=2015/2016
1/(x+1)=1/2016
=>x+1=2016
x=2015
Ủng hộ mk mha Chí Tiến
Lời giải:
$\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{x(x+1)}=\frac{3}{8}$
$\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{x(x+1)}=\frac{3}{8}$
$1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{6}-\frac{1}{7}+\frac{1}{x(x+1)}=\frac{3}{8}$
$1-\frac{1}{7}+\frac{1}{x(x+1)}=\frac{3}{8}$
$\frac{6}{7}+\frac{1}{x(x+1)}=\frac{3}{8}$
$\frac{1}{x(x+1)}=\frac{3}{8}-\frac{6}{7}=\frac{-27}{56}$
Kết quả này không phù hợp lắm.
Bạn xem lại đề nhé.
Ta có:
(1/2 + 1/4 + 1/8 + 1/16) = 8/16 + 4/16 + 2/16 + 1/16 = 15/16.
1/2 + 1/6 + 1/12 + 1/20 +…+ 1/132 = 1/(1.2) + 1/(2.3) + 1/(3.4) + 1/(4.5) +…+1/(11.12)
= (1 – 1/2) + (1/2 – 1/3) + (1/3 – 1/4) + (1/4 – 1/5) +…+ (1/11 – 1/12)
= 1 – 1/12 = 11/12
Vậy x = (15/16) : (11/12) = 45/44.
(1/2+1/4+1/8+1/16):x=1/2+1/6+1/12+1/20+...+1/132
(1-1/2+1/2-1/4+1/4-1/8+1/8-1/16):x=1/1x2+1/2x3+1/3x4+1/4x5+...+1/11x12
(1-1/16):x=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/11-1/12
15/16:x=1-1/12
15/16:x=11/12
x=15/16:11/12
x=45/44
Sửa đề : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{98}{100}\)
\(\Leftrightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{98}{100}\)
\(\Leftrightarrow\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}+....+\frac{\left(x+1\right)-x}{x\left(x+1\right)}=\frac{98}{100}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{\left(x+1\right)}=\frac{98}{100}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{\left(x+1\right)}=\frac{98}{100}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)}=\frac{1}{1}-\frac{98}{100}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)}=\frac{1}{50}\)
\(\Leftrightarrow x=50-1=49\)
Sửa đề: \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{98}{100}\)
(=) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{98}{100}\)
(=)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{98}{100}\)
(=)\(1-\frac{1}{x+1}=\frac{98}{100}\)
(=)\(\frac{1}{x+1}=1-\frac{98}{100}\)
(=)\(\frac{1}{x+1}=\frac{1}{50}\)=> \(x+1=50\)
\(x=50-1\)
\(x=49\)
T_i_c_k cho mình nha,thanks you so much!
có x mà ko có VP