Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+4+7+...+100
SSH: (100-1):3+1=34
Tổng: (100+1).34:2=1717
Bài B và C hình như đề bài sai hay sao ấy!!!
a)A=1/20+1/30+1/42+1/56+1/72+1/90+1/110
= 1/4*5 + 1/5*6 + 1/6*7 + ... + 1/10*11
= 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/10 - 1/11
= 1/4 - 1/11
= 7/44
b)B=1/2+1/4+1/6+1/8+...+1/512+1/1024
B = 1/2^1 + 1/2^2 + 1/2^3 + ... + 1/2^9 + 1/2^10
2B = 1 + 1/2 + 1/2^2 + ... + 1/2^10 + 1/2^11
2B - B = B = 1 + 1/2^11
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{256}-\frac{1}{512}+\frac{1}{512}-\frac{1}{1028}\)
\(=1-\frac{1}{1028}\)
\(=\frac{1027}{1028}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(A=1-\frac{1}{2^{10}}\)
\(A=\frac{2^{10}-1}{2^{10}}\)
Tham khảo nhé~
a) Đặt A=1/2 + 1/4 + 1/8 +...+ 1/256 + 1/512
\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^8}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^8}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
\(A=1-\frac{1}{2^9}\)
b)\(\frac{a}{b}+\frac{4}{6}+\frac{2}{10}=\frac{3}{2}\)
\(\Rightarrow\frac{a}{b}+\frac{13}{15}=\frac{3}{2}\)
\(\Rightarrow\frac{a}{b}=\frac{19}{30}\)
\(\frac{4}{5}:\frac{a}{b}-\frac{6}{5}=\frac{3}{10}\)
\(\Rightarrow\frac{4}{5}:\frac{a}{b}=\frac{3}{2}\)
\(\Rightarrow\frac{a}{b}=\frac{8}{15}\)
\(D=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+..........+\dfrac{1}{256}+\dfrac{1}{512}\)
\(\Leftrightarrow2D=1+\dfrac{1}{2}+\dfrac{1}{4}+......+\dfrac{1}{256}\)
\(\Leftrightarrow2D-D=\left(1+\dfrac{1}{2}+.....+\dfrac{1}{256}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.....+\dfrac{1}{512}\right)\)
\(\Leftrightarrow D=1-\dfrac{1}{512}=\dfrac{511}{512}\)
A=\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{512}-\frac{1}{1024}\)
=1-1/1024
=1023/1024