Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk chỉnh lại đề
\(A=\frac{8}{9}.\frac{15}{16}.\frac{24}{25}....\frac{99}{100}\)
\(=\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}.\frac{5^2-1}{5^2}....\frac{10^2-1}{10^2}\)
\(=\frac{2.4}{3^2}.\frac{3.5}{4^2}.\frac{4.6}{5^2}.....\frac{9.11}{10^2}\)
\(=\frac{2.3.4...9}{3.4.5...10}.\frac{4.5.6...11}{3.4.5...10}\)
\(=\frac{2}{10}.\frac{11}{3}=\frac{11}{15}\)
\(x+3\frac{1}{2}+x=24\frac{1}{4}\)
\(2x=24+\frac{1}{4}-3-\frac{1}{2}\)
\(2x=20+1+\frac{1}{4}-\frac{2}{4}\)
\(2x=20+\frac{3}{4}\)
\(2x=\frac{83}{4}\)
\(x=\frac{83}{4}:2\)
\(x=\frac{83}{8}\)
\(x+3\frac{1}{2}+x=24\frac{1}{4}\)
\(\Leftrightarrow x+\frac{7}{2}+x=\frac{97}{4}\)
\(\Leftrightarrow x+x=\frac{97}{4}-\frac{7}{2}\)
\(\Leftrightarrow2x=\frac{83}{4}\)
\(\Leftrightarrow x=\frac{83}{8}\)
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2009}\)
\(=\frac{1}{\frac{2\cdot\left(1+2\right)}{2}}+\frac{1}{\frac{3\cdot\left(3+1\right)}{2}}+\frac{1}{\frac{4\cdot\left(4+1\right)}{2}}+...+\frac{1}{\frac{2009\cdot\left(2009+1\right)}{2}}\)
\(=\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{2009\cdot2010}\)
\(=2\cdot\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2009\cdot2010}\right)\)
\(=2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2010}\right)\)
\(=2\cdot\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=1-\frac{1}{1005}\)
\(=\frac{1004}{1005}\)
1/1+2=3=1/1+2+2=6=1/1+2+3+4=10+3+6=19+1/1+2+3+4=29+3+6+10+19+2009=2076nếu mình làm sai thì nhớ chỉ dùm
nhớ kết bạn với mình nhé
a, thì dễ rồi bạn tự làm nhé
mk làm câu b thôi
b,\(\frac{1}{1x2}\)+ \(\frac{1}{2x3}\)+......+\(\frac{1}{99x100}\)
= 1 - \(\frac{1}{2}\)+ \(\frac{1}{2}\)-\(\frac{1}{3}\)+....+\(\frac{1}{99}\)- \(\frac{1}{100}\)
= 1 - \(\frac{1}{100}\)
= \(\frac{99}{100}\)
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}=\frac{1}{5}\)
\(B=1\times\frac{1996}{1993}\times\frac{1993}{1995}=\frac{1996}{1995}\)
c; 17\(\dfrac{2}{31}\) - (\(\dfrac{15}{17}\) + 6\(\dfrac{2}{31}\))
= 17 + \(\dfrac{2}{31}\) - \(\dfrac{15}{17}\) - 6 - \(\dfrac{2}{31}\)
= (17 - 6) - \(\dfrac{15}{17}\) + (\(\dfrac{2}{31}\) - \(\dfrac{2}{31}\))
= 11 - \(\dfrac{15}{17}\)+ 0
= \(\dfrac{172}{17}\)
b; 130\(\dfrac{25}{28}\) + 120\(\dfrac{17}{35}\)
= 130 + \(\dfrac{25}{28}\) + 120 + \(\dfrac{17}{35}\)
= (130 + 120) + (\(\dfrac{25}{28}\) + \(\dfrac{17}{35}\))
= 250 + (\(\dfrac{125}{140}\) + \(\dfrac{68}{140}\))
= 250 + \(\dfrac{193}{140}\)
= 250\(\dfrac{193}{140}\)
\(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{24}\)
\(=\left(\dfrac{1}{2}+\dfrac{1}{3}\right)+\left(\dfrac{1}{4}+\dfrac{1}{5}\right)+\left(\dfrac{1}{6}+\dfrac{1}{7}\right)+...+\left(\dfrac{1}{22}+\dfrac{1}{23}\right)+\dfrac{1}{24}\)
\(=\dfrac{3+2}{2\times3}+\dfrac{5+4}{4\times5}+\dfrac{7+6}{6\times7}+...+\dfrac{23+22}{22\times23}+\dfrac{1}{24}\)
\(=\dfrac{5}{6}+\dfrac{9}{20}+\dfrac{13}{42}+...+\dfrac{45}{506}+\dfrac{1}{24}\)
\(=\left(\dfrac{5}{6}+\dfrac{9}{20}\right)+\left(\dfrac{13}{42}+\dfrac{17}{72}\right)+...+\left(\dfrac{37}{342}+\dfrac{41}{420}\right)+\left(\dfrac{45}{506}+\dfrac{1}{24}\right)\)
\(=\dfrac{77}{60}+\dfrac{275}{504}+\dfrac{3013}{8580}+\dfrac{7409}{28560}+\dfrac{4927}{23940}+\dfrac{793}{6072}\)
\(=\left(\dfrac{77}{60}+\dfrac{275}{504}\right)+\left(\dfrac{3013}{8580}+\dfrac{7409}{28560}\right)+\left(\dfrac{4927}{23940}+\dfrac{793}{6072}\right)\)
\(=\dfrac{4609}{2520}+\dfrac{2493675}{4084080}+\dfrac{4075097}{12113640}\)
\(=\dfrac{9792714646+3269207925+1801192874}{5354228880}\)
\(=\dfrac{14863115445}{5354228880}\)
Thêm bước rút gọn nữa anh Phong ơi:
\(\dfrac{14863115445}{5354228880}=\dfrac{990874363}{356948592}\)