Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{T}{M}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{1}{99}+\frac{2}{98}+...+\frac{98}{2}+\frac{99}{1}}\)
Xét M - 99 + 98 = \(\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}\)
\(\Leftrightarrow M-1=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)\)
\(\Rightarrow M=\frac{100}{100}+100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(\Rightarrow\frac{T}{M}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)}=\frac{1}{100}\)
\(...=1-\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{4}-...-\dfrac{1}{98}+\dfrac{1}{99}\)
\(=\dfrac{1}{99}\) (Bạn xem lại đề)
A=-1++(-1)+..+-(1) có 50 số -1
=>A=-1x50=-50
B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
B=0+0+0+..+0
B=0
C=2^100-(2^99+2^98+...+1)
C=2^100-(2^100-1)
C=1
\(\Rightarrow C=\frac{1}{100}-\left(\frac{1}{100\cdot99}+\frac{1}{99\cdot98}+\frac{1}{98\cdot97}+...+\frac{1}{3\cdot2}+\frac{1}{2\cdot1}\right)\)
\(\Rightarrow C=\frac{1}{100}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{98\cdot99}+\frac{1}{99\cdot100}\right)\)
\(\Rightarrow C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(\Rightarrow C=\frac{1}{100}-1+\frac{1}{100}\)
\(\Rightarrow C=\left(\frac{1}{100}+\frac{1}{100}\right)-1\)
\(\Rightarrow C=\frac{1}{50}-1\)
\(\Rightarrow C=\frac{-49}{50}\)
C=\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\frac{1}{100}-\left(\frac{1}{2.1}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\frac{99}{100}\)
=\(\frac{-98}{100}=\frac{-49}{50}\)
C=1/100 -1/100.99 -1/99.98 -1/98.97-......- 1/3.2 -1/2.1
= 1/100 - (1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1)
Đặt A = 1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1 => C = 1/100 - A
Dễ thấy 1/2.1 = 1/1 - 1/2
1/3.2 = 1/2 - 1/3
.....................
1/99.98 = 1/98 - 1/99
1/100.99 = 1/99 - 1/100
=> cộng từng vế với vế ta
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
1/1.2.3+1/2.3.4+...+1/98.99.100
=1/2.(1/1.2-1/2.3)+1/2.(1/2.3-1/3.4)+...+1/2.(1/98.99-1/99.100)
=1/2.(1/1.2-1/2.3+1/2.3-1/3.4+...+1/98.99-1/99.100)
=1/2.(1/2-1/9900)=1/2.4949/9900=4949/19800
fraction{1}{2}
Đề là rút phải không bạn, nếu thế thì mình biết làm đấy
Đặt biểu thức trên là B, ta có:
\(B=1+\frac{1}{2}+\frac{1}{2}^2+\frac{1}{2}^3+...+\frac{1}{2}^{100}\)
\(B=1+\frac{1}{2}+\frac{1^2}{2^2}+\frac{1^3}{3^3}+...+\frac{1^{100}}{2^{100}}\)
\(B=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(2B=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2B-B=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{99^2}-1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{100}}\)
\(B=2-\frac{1}{2^{100}}=\frac{2^{99}}{2^{100}}-\frac{1}{2^{100}}=\frac{2^{99}-1}{2^{100}}\)