
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A = ( 1 - 1/2 ) . ( 1 - 1/3 ) . ( 1 - 1/4 ) . ... . ( 1 - 1/2000)
A = ( 2/2 - 1/2 ) . ( 3/3 - 1/3 ) . ( 4/4 - 1/4 ) . ... . ( 2000/2000 - 1/2000 )
A = 1/2 . 2/3 . 3/4 . ... . 1999/2000
A = 1.(2.3. ... . 1999)/ (2.3.4. ... .1999).2000
A = 1/2000
B = ( 1 + 1/2 ).(1 + 1/3 ).( 1+ 1/4 ). ... .(1+1/2000)
B = ( 2/2 + 1/2 ).(3/3+1/3).(4/4+1/4). ... .(1+1/2000)
B = 3/2.4/3.5/4. ... .2001/2000
B = (3.4.5. ... .2000).2001/2.(3.4. ... .2000)
B = 2001/2
B = 1000,5

câu a thì đặt cho nó là a rồi nhân 1/2 vào a thì nó là dạng kiểu phân số thoe qui luật ấy mà
còn câu sau thì

0,75 = \(\dfrac{3}{4}\)
Ta có: \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{2000^2}\) < \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + ... +\(\dfrac{1}{2000.2001}\).
<=> \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{2000^2}\) < \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + ... + \(\dfrac{1}{2000}\) - \(\dfrac{1}{2001}\).
<=> \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{2000^2}\) < \(\dfrac{1}{2}\) - \(\dfrac{1}{2001}\).
Vì \(\dfrac{1}{2}\) < \(\dfrac{3}{4}\) nên \(\dfrac{1}{2}\) - \(\dfrac{1}{2001}\) < \(\dfrac{3}{4}\).
Vậy \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{2000^2}\) < \(\dfrac{3}{4}\).

Ta có:
\(\frac{A}{B}=\frac{\frac{2000}{1}+\frac{1999}{2}+\frac{1998}{3}+...+\frac{1}{2000}+2000}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=\frac{\left(\frac{2000}{1}+1\right)+\left(\frac{1999}{2}+1\right)+\left(\frac{1998}{3}+1\right)+...+\left(\frac{1}{2000}+1\right)+2000+1}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=\frac{\frac{2001}{1}+\frac{2001}{2}+\frac{2001}{3}+...+\frac{2001}{2000}+2001}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=\frac{2001\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=2001\)
bn cộng trên tử rồi thì phải trừ đi chứ ko phân số sẽ thay đổi