K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2021

\(\frac{120}{x}-\frac{120}{x+12}=\frac{1}{2}\)

\(\Leftrightarrow120.2\left(x+2\right)-120.2x=x\left(x+12\right)\)

\(\Leftrightarrow240x+2880-240x=x^2+12x\)

\(\Leftrightarrow240x+2880-240x-x^2-12x=0\)

\(\Leftrightarrow2880-x^2-12x=0\)

\(\Leftrightarrow x^2+12x-2880=0\)

\(\Delta'=b'^2-ac\)

     \(=6^2-1\left(-2880\right)\)

     \(=2916\Rightarrow\sqrt{\Delta'}=\sqrt{2916}=54>0\)

=> Phương trình có 2 nghiệm phân biệt:

\(x_1=-6+54=48\)

\(x_2=-6-54=-60\)

16 tháng 9 2017

Ta có 
N=x^5/120+x^4/12+7x^3/24+5x^2/12+x/5 
N = ( x^5 + 10x^4 + 35x^3 + 50x^2 + 24x)/120 
N = x( x^4 + 10x^3 + 35x^2 + 50x + 24)/120 
N = x( x^4 + x^3 + 9x^3 + 9x^2 + 26x^2 + 26x + 24x + 24)/120 
N = x(x +1)(x^3 + 9x^2 + 26x + 24)/120 
N = x(x +1)(x^3+ 2x^2 + 7x^2 + 14x + 12x + 24)/120 
N = x(x+1)(x+2)(x^2 + 7x + 12)/120 
N = x(x +1)(x+2)(x+3)(x+4)/120 
N có tử số là tích của 5 số tự nhiên liên tiếp 
-> N chia hết cho 5, 3 
trong 5 số tự nhiên liên tiếp có một số chia hết cho 4 và một số chia hết cho 2 
-> N chia hết cho 4x2 = 8 
Vậy N chia hết cho 3x5x8 = 120 
Vậy N luôn là số tự nhiên với mọi số tự nhiên x

16 tháng 9 2017

Ben xem thế này có đúng ko nha 

P = x^5/120 + x^4/12 + 7x³/24 + 5x²/12 + x/5 
= x(x^4/120 + x³/12 + 7x²/24 + 5x/12 + 1/5) 
= x(x^4 + 10x³ + 35x² + 50x + 24)/120 
Xét: x(x^4 + 10x³ + 35x² + 50x + 24) 
= x(x + 1)(x + 2)(x + 3)(x + 4) 
-- 
Trước hết ta chứng minh x(x + 1)(x + 2)(x + 3)(x + 4) chia hết cho 8 
* Nếu x chia hết cho 2 => x + 2 và x + 4 cũng chia hết cho 2 
=> x(x + 1)(x + 2)(x + 3)(x + 4) chia hết cho 8 
* Nếu x lẻ => x = 2k + 1 
=> x + 1 = 2k + 2 và x + 3 = 2k + 4 
Dễ dàng chứng minh một trong hai số x + 1 và x + 3 có một số chia hết cho 2 và một số chia hết cho 4 
Thật vậy: 
► Nếu k lẻ thì 
x + 1 = 2k + 2 = 2(2m + 1) + 2 = 4m + 4 chia hết cho 4 
x + 3 = 2k + 4 = 2(2m + 1) + 4 = 4m + 6 chia hết cho 2 
=> x(x + 1)(x + 2)(x + 3)(x + 4) chia hết cho 8 
► Nếu n chẵn thì: 
x + 1 = 2k + 2 = 4m + 2 chia hết cho 2 
x + 3 = 2k + 4 = 4m + 4 chia hết cho 4 
=> x(x + 1)(x + 2)(x + 3)(x + 4) chia hết cho 8 
Tóm lại ta có 
x(x + 1)(x + 2)(x + 3)(x + 4) chia hết cho 8 với mọi x là số tự nhiên (1) 
--- 
Mặt khác x(x + 1)(x + 2)(x + 3)(x + 4) là tích 5 số tự nhiên liên tiếp nên tồn tại một số chia hết cho 3 và một số chia hết cho 5 
=> x(x + 1)(x + 2)(x + 3)(x + 4) vừa chia hết cho 3 vừa chia hết cho 5 với mọi x là số tự nhiên (2) 
---- 
Từ (1) và (2) cho ta 
x(x + 1)(x + 2)(x + 3)(x + 4) vừa chia hết cho 3 vừa chia hết cho 5, vừa chia hết cho 8 với mọi x là số tự nhiên 
mà (3 , 5, 8) là bộ 3 số nguyên tố cùng nhau 
=> x(x + 1)(x + 2)(x + 3)(x + 4) chia hết cho tích 3.5.8 = 120 
Vậy P = x(x^4 + 10x³ + 35x² + 50x + 24)/120 là một số tự nhiên.

7 tháng 8 2016

e/(x+6)(x-1)(x2+5x+16)

7 tháng 8 2016

Help me!!!

18 tháng 9 2021

\(\sqrt{\left(120-11\right)^2}+\sqrt{\left(10-\sqrt{120}\right)^2}\)

\(=120-11+10+\sqrt{120}\)

\(=\sqrt{120}\left(\sqrt{120}+1\right)-1\)

18 tháng 9 2021

\(a,=\left(120-11\right)+\left|10-\sqrt{120}\right|=109+\sqrt{120}-10=99+2\sqrt{30}\\ b,=\sqrt{\left(\sqrt{x+1}+1\right)^2-\left(\sqrt{x+1}+1\right)^2}=\sqrt{0}=0\)

21 tháng 2 2018

1) \(\dfrac{120\left(x-10\right)}{x\left(x-10\right)}-\dfrac{120x}{x\left(x-10\right)}=1\)

=> \(\dfrac{120x-1200-120x}{x\left(x-10\right)}=1\)

=> x(x-10)=-1200

=> x2-10x+1200=0

=> (x2-10x+25)+1175=0

=> (x-5)2+1175>0

=> pt vo nghiem

11 tháng 5 2017

0! < 1

0! = 0 x 0

11 tháng 5 2017

0!<1

0!= 0  x  0

NV
2 tháng 1 2019

\(\left\{{}\begin{matrix}x-y=10\\\dfrac{-120\left(x-y\right)}{xy}=\dfrac{2}{5}\end{matrix}\right.\) \(\Rightarrow\dfrac{-1200}{xy}=\dfrac{2}{5}\Rightarrow xy=-3000\)

Ta được hệ: \(\left\{{}\begin{matrix}x-y=10\\xy=-3000\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=y+10\\xy=-3000\end{matrix}\right.\)

Thay pt trên vào dưới:

\(\left(y+10\right).y=-3000\Rightarrow y^2+10y+3000=0\)

\(\Rightarrow\) pt vô nghiệm

Vậy hệ đã cho vô nghiệm

Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=120\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=120\)(*)

Đặt \(a=x^2+5x\)

(*)\(\Leftrightarrow\left(a+4\right)\left(a+6\right)=120\)

\(\Leftrightarrow a^2+10a+24-120=0\)

\(\Leftrightarrow a^2+10a+25-121=0\)

\(\Leftrightarrow\left(a+5\right)^2-11^2=0\)

\(\Leftrightarrow\left(a+5-11\right)\left(a+5+11\right)=0\)

\(\Leftrightarrow\left(a-6\right)\left(a+16\right)=0\)

\(\Leftrightarrow\left(x^2+5x-6\right)\left(x^2+5x+16\right)=0\)

\(x^2+5x+16>0\forall x\)

nên \(x^2+5x-6=0\)

\(\Leftrightarrow x^2+6x-x-6=0\)

\(\Leftrightarrow x\left(x+6\right)-\left(x+6\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+6=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=1\end{matrix}\right.\)

Vậy: S={-6;1}

xin lỗi bạn, sai rồi bạn ơi