K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 4 2020

\(\overrightarrow{AB}=\left(-3;3;-1\right)\)

Phương trình tham số AB: \(\left\{{}\begin{matrix}x=2-3t\\y=-2+3t\\z=1-t\end{matrix}\right.\)

Mặt phẳng (Oxz) có pt \(y=0\)

\(\Rightarrow\) Tọa độ M thỏa mãn: \(-2+3t=0\Leftrightarrow t=\frac{2}{3}\)

\(\Rightarrow M\left(0;0;\frac{1}{3}\right)\)

15 tháng 4 2020

Cho điểm A(a;0;0),B(0;b;0),C(0;0;c)với a,b,c>0

thoả mãn 2/a−2/b+1/c=1. Mặt phẳng (ABC) luôn đi qua điểm có tọa độ

15 tháng 4 2020

sorry hiu

Bài 1: Cho hàm số: f(x) = ax2 – 2(a + 1)x + a + 2 ( a ≠ 0) a) Chứng tỏ rằng phương trình f(x) = 0 luôn có nghiệm thực. Tính các nghiệm đó. b) Tính tổng S và tích P của các nghiệm của phương trình f(x) = 0. Khảo sát sự biến thiên và vẽ đồ thị hàm số của S và P theo a. Bài 2: Cho hàm số: y= \(-\dfrac{1}{3}\)x3 + (a − 1)x2 + (a + 3)x − 4 a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) của hàm...
Đọc tiếp

Bài 1: Cho hàm số:

f(x) = ax2 – 2(a + 1)x + a + 2 ( a ≠ 0)

a) Chứng tỏ rằng phương trình f(x) = 0 luôn có nghiệm thực. Tính các nghiệm đó.

b) Tính tổng S và tích P của các nghiệm của phương trình f(x) = 0. Khảo sát sự biến thiên và vẽ đồ thị hàm số của S và P theo a.

Bài 2:

Cho hàm số: y= \(-\dfrac{1}{3}\)x3 + (a − 1)x2 + (a + 3)x − 4

a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) của hàm số khi a = 0

b) Tính diện tích hình phẳng giới hạn bởi (C) và đường thẳng y = 0, x = -1, x = 1

Bài 3:

Cho hàm số : y = x3 + ax2 + bx + 1

a) Tìm a và b để đồ thị của hàm số đi qua hai điểm A(1, 2) và B(-2, -1)

b) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ứng với các giá trị tìm được của a và b.

c) Tính thể tích vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường thẳng y = 0, x = 0, x = 1 và đồ thị (C) quanh trục hoành.


0
AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Lời giải

Từ bảng biến thiên ta thấy ĐTHS có 2 điểm cực trị.

Điểm cực đại: \((-1;5)\)

Điểm cực tiểu: \((3;1)\)

NV
15 tháng 4 2020

Cách nhìn nhanh: giữ nguyên thọa độ x và y, thay tọa độ z của (P) vào được đáp án là \(\left(-1;2;3\right)\)

Còn làm tự luận dài dòng:

Mặt phẳng (P) nhận \(\left(0;0;1\right)\) là 1 vtpt

Gọi d là đường thẳng qua M và vuông góc (P)

\(\Rightarrow\) d nhận \(\left(0;0;1\right)\) là 1 vtcp

Phương trình tham số d: \(\left\{{}\begin{matrix}x=-1\\y=2\\z=t\end{matrix}\right.\)

Hình chiếu M' của M lên (P) là giao của d và (P) nên là nghiệm: \(t=3\)

\(\Rightarrow M'\left(-1;2;3\right)\)

NV
15 tháng 4 2020

Trắc nghiệm thì dễ nhất là thay số vào và test :)

Thay tọa độ 4 đáp án vào pt (P) có đúng đáp án A thỏa mãn

Vậy chắc chắn đáp án đúng là A

AH
Akai Haruma
Giáo viên
23 tháng 10 2020

Lời giải:

Đồ thị màu xanh lá là $y=4^x$

Đồ thị màu xanh dương là $y=\left(\frac{1}{4}\right)^x$

Bài 3: Lôgarit