K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2020

a, \(B=\left(\frac{2x+1}{2x-1}+\frac{4}{1-4x^2}-\frac{2x-1}{2x+1}\right):\frac{x^2+2}{2x+1}\)

\(=\left(\frac{2x+1}{2x-1}+\frac{4}{\left(1-2x\right)\left(2x+1\right)}-\frac{2x-1}{2x+1}\right):\frac{x^2+2}{2x+1}\)

\(=\left(\frac{\left(2x+1\right)^2}{\left(2x-1\right)\left(2x+1\right)}-\frac{4}{\left(2x-1\right)\left(2x+1\right)}-\frac{\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}\right):\frac{x^2+2}{2x+1}\)

\(=\left(\frac{4x^2+4x+1-4-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\right):\frac{x^2+2}{2x+1}\)

\(=\frac{8x-4}{\left(2x-1\right)\left(2x+1\right)}.\frac{2x+1}{x^2+2}=\frac{8x-4}{\left(2x-1\right)\left(x^2+2\right)}\)

b, Thay x = -1 ta được : \(\frac{9\left(-1\right)-4}{\left[2\left(-1\right)-1\right]\left[\left(-1\right)^2+2\right]}=-\frac{13}{-9}=\frac{13}{9}\)

24 tháng 12 2020

a, \(\frac{x+1}{2x+6}+\frac{2x+3}{x^2+3x}=\frac{x+1}{2\left(x+3\right)}+\frac{3x+2}{x\left(x+3\right)}\)

\(=\frac{x^2+x}{2x\left(x+3\right)}+\frac{6x+4}{2x\left(x+3\right)}=\frac{x^2+7x+4}{2x\left(x+3\right)}\)

b, Sua de :  \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}\)

\(=\frac{3x}{2x\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}=\frac{2x+6}{2x\left(x+3\right)}=\frac{1}{x}\)

22 tháng 12 2020

\(P=\frac{3}{x+3}+\frac{1}{x-3}-\frac{18}{9-x^2}\)

a) Điều kiện: \(x\ne3;x\ne-3\)

b)  \(P=\frac{3}{x+3}+\frac{1}{x-3}-\frac{18}{9-x^2}\)

\(P=\frac{3.\left(x-3\right)}{\left(x+3\right).\left(x-3\right)}+\frac{x+3}{\left(x-3\right).\left(x+3\right)}-\frac{-18}{\left(x-3\right).\left(x+3\right)}\)

\(P=\frac{3x-9+x+3+18}{\left(x+3\right).\left(x-3\right)}=\frac{4x+12}{\left(x-3\right).\left(x+3\right)}=\frac{4.\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}=\frac{4}{x-3}\)

c)  \(\frac{4}{x-3}=4\Leftrightarrow4=\left(x-3\right).4\Leftrightarrow4x-12=4\Leftrightarrow4x=16\Leftrightarrow x=4\)

14 tháng 7 2020

giúp mk vsssss

hơi dài, thôi chăm chỉ tí có sao :v =))

\(A=-x^3\left(3x-1\right)-x\left(1+3x^4\right)-x^2\left(x^2-x-2\right)\)

\(=-3x^4+x^3-x-3x^5-x^4+x^3+2x^2\)

\(=-4x^4+2x^3-x-3x^5+2x^2\)

\(B=-x^2\left(2x^2-2x-4\right)-2x\left(2-4x^4\right)-2x^3\left(2x-2\right)\)

\(=-2x^3+2x^3+4x^2-4x+8x^5-4x^4+4x^3\)

\(=4x^2-4x+8x^5-4x^4+4x^3\)

Ta có : \(A-B=-4x^4+2x^3-x-3x^5+2x^2-4x^2+4x-8x^5+4x^4-4x^3\)

\(=-2x^3+3x-11x^5-2x^2\)

Tương tự bn nhé, mk hơi bị đao phần đa thức khi qua kì thi nên hơi bị chậc lẫn một xíu =(( 

16 tháng 9 2017

giúp mk vs nha , mk đăng cần rất gấp

16 tháng 9 2017

mình hk bít vít

23 tháng 12 2020

a) Điều kiện: \(x\ne\pm1\)

 \(B=\frac{x-1}{x+1}-\frac{x+1}{x-1}-\frac{4}{1-x^2}\)

\(B=\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}-\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}-\frac{-4}{\left(x-1\right).\left(x+1\right)}\)

\(B=\frac{x^2-x-x+1-x^2-x-x-1+4}{\left(x-1\right).\left(x+1\right)}\)

\(B=\frac{-4x+4}{\left(x-1\right).\left(x+1\right)}=\frac{-4.\left(x-1\right)}{\left(x-1\right).\left(x+1\right)}=\frac{-4}{x+1}\)

b) \(x^2-x=0\Leftrightarrow x.\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Khi  \(x=0\Leftrightarrow\frac{-4}{0-1}=\frac{-4}{-1}=4\)

Khi \(x=1\Leftrightarrow\frac{-4}{1-1}=0\)

c) \(\frac{-4}{x+1}=-3\Leftrightarrow-3.\left(x+1\right)=-4\Leftrightarrow x+1=\frac{4}{3}\Leftrightarrow x=\frac{1}{3}\)