Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính P = 11+2+11+2+3+11+2+3+4+...+11+2+3+4+...+2021
Chúc bạn học tốt nhé
P=1+1/3+1/6+1/10+…..+1/2021×2022÷2
P/2=1/2+1/6+1/12+1/20+…..+1/2021×2022
P/2=1/1×2+1/2×3+1/3×4+…….+1/2021×2022
P/2=1-1/2+1/2-1/3+1/3-1/4+….+1/2021-1/2022=1-1/2022=2021/2022
P=2021/1011
Chúc bn học tốt
`@` `\text {Ans}`
`\downarrow`
`1)`
\(2x+\dfrac{1}{2}=\dfrac{5}{3}\)
`\Rightarrow`\(2x=\dfrac{5}{3}-\dfrac{1}{2}\)
`\Rightarrow`\(2x=\dfrac{7}{6}\)
`\Rightarrow`\(x=\dfrac{7}{6}\div2\)
`\Rightarrow`\(x=\dfrac{7}{12}\)
Vậy, `x = 7/12`
`2)`
\(\dfrac{1}{7}+\dfrac{4}{5}x=\dfrac{5}{3}\)
`\Rightarrow`\(\dfrac{4}{5}x=\dfrac{5}{3}-\dfrac{1}{7}\)
`\Rightarrow`\(\dfrac{4}{5}x=\dfrac{32}{21}\)
`\Rightarrow`\(x=\dfrac{32}{21}\div\dfrac{4}{5}\)
`\Rightarrow`\(x=\dfrac{40}{21}\)
Vậy, `x = 40/21`
`3)`
\(\dfrac{3}{5}-\dfrac{3}{5}x=\dfrac{1}{7}\)
`\Rightarrow`\(\dfrac{3}{5}x=\dfrac{3}{5}-\dfrac{1}{7}\)
`\Rightarrow`\(\dfrac{3}{5}x=\dfrac{16}{35}\)
`\Rightarrow`\(x=\dfrac{16}{35}\div\dfrac{3}{5}\)
`\Rightarrow`\(x=\dfrac{16}{21}\)
Vậy, `x = 16/21`
`4)`
\(\dfrac{5}{6}-3x=\dfrac{3}{4}\)
`\Rightarrow`\(3x=\dfrac{5}{6}-\dfrac{3}{4}\)
`\Rightarrow`\(3x=\dfrac{1}{12}\)
`\Rightarrow`\(x=\dfrac{1}{12}\div3\)
`\Rightarrow`\(x=\dfrac{1}{36}\)
Vậy, `x = 1/36`
`5)`
\(\dfrac{5}{3}-\dfrac{1}{2}x=\dfrac{3}{7}\)
`\Rightarrow`\(\dfrac{1}{2}x=\dfrac{5}{3}-\dfrac{3}{7}\)
`\Rightarrow`\(\dfrac{1}{2}x=\dfrac{26}{21}\)
`\Rightarrow`\(x=\dfrac{26}{21}\div\dfrac{1}{2}\)
`\Rightarrow`\(x=\dfrac{52}{21}\)
Vậy, `x = 52/21`
`6)`
\(5x+\dfrac{1}{2}=\dfrac{2}{3}\)
`\Rightarrow`\(5x=\dfrac{2}{3}-\dfrac{1}{2}\)
`\Rightarrow`\(5x=\dfrac{1}{6}\)
`\Rightarrow`\(x=\dfrac{1}{6}\div5\)
`\Rightarrow`\(x=\dfrac{1}{30}\)
Vậy, `x = 1/30.`
Bài 1:
a) \(\dfrac{65}{91}+\dfrac{-33}{55}=\dfrac{5}{7}+\dfrac{-3}{5}=\dfrac{25}{35}+\dfrac{-21}{35}=\dfrac{4}{35}\)
b) \(\dfrac{36}{-84}+\dfrac{100}{450}=\dfrac{-3}{7}+\dfrac{2}{9}=\dfrac{-27}{63}+\dfrac{14}{63}=\dfrac{-13}{63}\)
\(A=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)
\(\Rightarrow A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A=1-\dfrac{1}{100}\)
\(\Rightarrow A=\dfrac{99}{100}\)
Đoạn suy ra đầu tiên cơ sở gì bạn suy ra được như vậy nhỉ?
=1/2+1/3+1/4+...+1/100
xét mẫu:có ssh là (100-2):1+1=99 số
tổng là (100+2)*99:2=5940
vậy ta có 1/5940
1/ 1 + (-2) + 3 + (-4) + . . . + 19 + (-20)
=1-2+3-4+...+19-20
=(1-2)+(3-4)+...+(19-20)
=(-1)+(-1)+...+(-1)
=(-1).10
=-10
2/ 1 – 2 + 3 – 4 + . . . + 99 – 100
=(1-2)+(3-4)+...+(99-100)
=(-1)+(-1)+...+(-1)
=(-1).50
=-50
3/ 2 – 4 + 6 – 8 + . . . + 48 – 50
=(2-4)+(6-8)+...+(48-50)
=(-2)+(-2)+...+(-2)
=(-2).13
=-26
4/ – 1 + 3 – 5 + 7 - . . . . + 97 – 99
=(-1)+(3-5)+(7-9)+...+(97-99)
=(-1)+(-2)+(-2)+...+(-2)
=(-1)+(-2).45
=(-1)+(-90)
=(-91)
5/ 1 + 2 – 3 – 4 + . . . . + 97 + 98 – 99 - 100
=(1+2-3-4)+...+(97 + 98 – 99 - 100)
=(-4)+...+(-4)
=(-4).25
=-100
\(HT\)
1/ \(1+(-2)+3+(-4)+...+19+(-20)\)
\(=(-1+3+5+...+19)-(2+4+6+...+20)\)
\(=(19-1):2+1=10\)
\(=(1+19).10:2-(20+2).10:2\)
\(=100-110\)
\(=-10\)
2/ \(1 – 2 + 3 – 4 + . . . + 99 – 100\)
\(= ( 1 - 2 ) + ( 3 - 4) + .... + ( 99 - 100 )\)
\(= -1 + ( -1) + ....+ ( -1)\)
\(=(-1).50\)
\(=-50\)
3/ \( 2 – 4 + 6 – 8 + . . . + 48 – 50\)
\(= 2 +( – 4 + 6)+( – 8+10) + . . . +( -44+46)+ ( 48 – 50)\)
\(= 2+2+2+...+2+( -2) \)
\(= 2.12 +( -2 ) \)
\(=22\)
4/ \(-1+3-5+7-...+97-99\)
\(= ( -1 + 3 ) + ( -5 + 7 )+....+( -93 +95 ) + ( 97 - 99 )\)
\(= -2+( -2)+...+( -2)+2\)
\(= -2.24+2\)
\(=-46\)
5/ \( 1+2-3-4+...+97+98-99-100\)
\(= ( 1+2-3-4)+...+( 97+98-99-100)\)
\(= -4+...+( -4)\)
\(=(-4).25\)
\(=-100\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)
\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}\)