![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 3 3/4 . x = 1 1/2
<=> 15/4 . x = 3/2
<=> x = 3/4 . 4/15
<=> x = 1/5
Vậy x = 1/5
b) 1 1/4 x + 1 1/2 = 1 1/4
<=> 5/4 . x + 3/2 = 5/4
<=> 5/4 . x = 5/4 - 3/2
<=> 5/4 . x = -1/4
<=> x = -1/4 . 4/5
<=> x = -1/5
Vậy x = -1/5
c) ( 3 1/3 - 1 1/2 x ) : 5/6 = 1 1/2
<=> ( 10/3 - 3/2 x ) : 5/6 = 3/2
<=> 10/3 - 3/2 x = 3/2 . 5/6
<=> 10/3 - 3/2 x = 5/4
<=> 3/2 . x = 10/3 - 5/4
<=> 3/2 . x = 25/12
<=> x = 25/12 . 2/3
<=> x = 25/18
Vậy x = 25/18
d) ( 3/7 x - 1 ) : 4 = -1/28
<=> 3/7 . x - 1 = -1/28 . 1/4
<=> 3/7 . x - 1 = -1/112
<=> 3/7 . x = -1/112 + 1
<=> 3/7 . x = 111/112
<=> x = 111/112 . 7/3
<=> x = 37/16
Vậy x = 37/16
e) | x - 3/4 | = 1
<=> x - 3/4 = 1
hoặc x - 3/4 = -1
<=> x = 1 + 3/4
hoặc x = -1 + 3/4
<=> x = 7/4
hoặc x = -1/4
Vậy x = 7/4 ; x = -1/4
f) | 2/3 . x + 1/3 | = 5/6
<=> 2/3 . x + 1/3 = 5/6
hoặc 2/3 . x + 1/3 = -5/6
<=> 2/3 . x = 5/6 - 1/3
hoặc 2/3 . x = -5/6 - 1/3
<=> 2/3 . x = 1/2
hoặc 2/3 . x = -7/6
<=> x = 1/2 . 3/2
hoặc x = -7/6 . 3/2
<=> x = 3/4
hoặc x = -7/4
Vậy x = 3/4 ; x = -7/4
![](https://rs.olm.vn/images/avt/0.png?1311)
1.\(\dfrac{-1}{4}\) \(-\) x \(=\dfrac{-3}{2}\)
\(\Leftrightarrow\) x \(\dfrac{-3}{2}-\dfrac{-1}{4}\)
\(\Leftrightarrow\) x \(=\dfrac{-5}{4}\)
1. -1/4 - x = -3/2
x = -1/4 - -3/2
x = -1/4 - -6/4
x = 5/4
2. 3/5 . (x - 1/2) : 3/5 - 1/3 = -1/2
3/5 . (x - 1/2) : 3/5 = -1/2 + 1/3
3/5 . (x - 1/2) : 3/5 = -3/6 + 2/6
3/5 . (x - 1/2) : 3/5 = -1/6
3/5 . (x - 1/2) = -1/6 . 3/5
3/5 . (x - 1/2) = -1/10
x - 1/2 = -1/10 : 3/5
x - 1/2 = -1/6
x = -1/6 + 1/2
x = -1/6 + 3/6
x = 2/6
x = 1/3
Mấy câu sau bn tự làm nha!
![](https://rs.olm.vn/images/avt/0.png?1311)
Chị sẽ giúp em nốt mấy bài này, em còn nhận ra chị ko vậy?
\(A=\frac{2}{1x2}+\frac{2}{2x3}+\frac{2}{3x4}+...+\frac{2}{99x101}\)
\(A=2x\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{99x101}\right)\)
\(A=2x\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=2x\left(1-\frac{1}{101}\right)=2x\frac{100}{101}=\frac{200}{101}\)
------------------------------
\(B=\left(1+\frac{1}{2}\right)x\left(1+\frac{1}{3}\right)x\left(1+\frac{1}{4}\right)x...x\left(1+\frac{1}{2016}\right)\)
\(B=\frac{3}{2}x\frac{4}{3}x\frac{5}{4}x...x\frac{2017}{2016}\) (rút gọn từ trên tử xuống dưới mẫu nhé)
\(B=\frac{2017}{2}\)
-------------------------------
\(C=\frac{3}{1x4}+\frac{3}{4x7}+\frac{3}{7x10}+...+\frac{3}{64x67}\)
\(C=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{64}-\frac{1}{67}\)
\(C=1-\frac{1}{67}=\frac{67}{67}-\frac{1}{67}=\frac{66}{67}\)
--------------------------------
\(D=\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x...x\left(1-\frac{1}{20}\right)\)
\(D=\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x...x\frac{19}{20}\)(chỗ này cũng rút gọn từ trên tử xuống dưới mẫu)
\(D=\frac{1}{20}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(3x-1\right).\left(\frac{-1}{2}x+5\right)=0\)
\(\Rightarrow3x-1=0\Rightarrow3x=1\Rightarrow x=\frac{1}{3}\)
\(\frac{-1}{2}x+5=0\Rightarrow\frac{-1}{2}x=-5\Rightarrow x=10\)
b) \(3\left(x-\frac{1}{2}\right)-5\left(x+\frac{3}{5}\right)=x+\frac{1}{5}\)
\(3x-\frac{3}{2}-5x-3=x+\frac{1}{5}\)
\(\Rightarrow3x-5x-x=\frac{1}{5}+\frac{3}{2}+3\)
\(-3x=\frac{47}{10}\)
\(x=\frac{-47}{30}\)
c) \(-5.\left(x+\frac{1}{5}\right)-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{3}{2}x-\frac{5}{6}\)
\(-5x-1-\frac{1}{2}x+\frac{1}{3}=\frac{3}{2}x-\frac{5}{6}\)
\(-5x-\frac{1}{2}x-\frac{3}{2}x=\frac{-5}{6}+1-\frac{1}{3}\)
\(-7x=\frac{-1}{6}\)
\(x=\frac{1}{42}\)
d) \(3.\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)
\(3.\left(3x-\frac{1}{2}\right)^3=\frac{-1}{9}\)
\(\left(3x-\frac{1}{2}\right)^3=\frac{-1}{27}\)
\(\left(3x-\frac{1}{2}\right)^3=\left(\frac{-1}{3}\right)^3\)
\(\Rightarrow3x-\frac{1}{2}=\frac{-1}{3}\)
\(3x=\frac{1}{6}\)
\(x=\frac{1}{18}\)
Học tốt nhé bn!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x\div4\frac{1}{3}=-2,5\)
\(\Leftrightarrow x\div\frac{13}{3}=\frac{-5}{2}\)
\(\Leftrightarrow x=\frac{-5}{2}.\frac{13}{3}\)
\(\Leftrightarrow x=\frac{-65}{6}\)
\(x\div\frac{-3}{5}=\frac{-10}{21}\)
\(\Leftrightarrow x=\frac{-10}{21}.\frac{-3}{5}\)
\(\Leftrightarrow x=\frac{30}{105}\)
\(\Leftrightarrow x=\frac{2}{7}\)
\(\frac{2}{3}x-\frac{1}{2}=\frac{1}{10}\)
\(\Leftrightarrow\frac{2}{3}x=\frac{1}{10}+\frac{1}{2}\)
\(\Leftrightarrow\frac{2}{3}x=\frac{6}{10}\)
\(\Leftrightarrow x=\frac{6}{10}\div\frac{2}{3}\)
\(\Leftrightarrow x=\frac{18}{20}\)
\(\Leftrightarrow x=\frac{9}{10}\)
\(\frac{1}{2}x+\frac{1}{2}=\frac{5}{2}\)
\(\Leftrightarrow\frac{1}{2}\left(x+1\right)=\frac{5}{2}\)
\(\Leftrightarrow\left(x+1\right)=\frac{5}{2}\div\frac{1}{2}\)
\(\Leftrightarrow\left(x+1\right)=5\)
\(\Leftrightarrow x=5-1\)
\(\Leftrightarrow x=4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{3}{2}x-\frac{2}{5}=\frac{1}{3}x-\frac{1}{4}\)
\(\Rightarrow\frac{3}{2}x-\frac{1}{3}x=-\frac{1}{4}+\frac{2}{5}\)
\(\frac{7}{6}x=\frac{3}{20}\Rightarrow x=\frac{9}{70}\)
b) \(-5^{\frac{1}{2}x+1}=\frac{3}{4}-\frac{7}{6}\)
\(-5^{\frac{1}{2}x}.\left(-5\right)=-\frac{5}{12}\)
\(-5^{\frac{1}{2}x}=\frac{1}{12}\)
mà -51/2x mang giá trị âm
1/12 có giá trị dương
=> không tìm được x
c) \(\frac{2x-2}{3}=\frac{7x+3}{2-1}\)
\(\frac{2x-2}{3}=7x+3=\frac{21x+9}{3}\)
=> 2x - 2 = 21x + 9
=> 2x - 21x = 9 + 2
-19x = 11
x = -11/19
phần d bn lm như phần a nha
\(\frac{1}{2}.\left(1-x\right)+\frac{2}{3}=1\)
\(\frac{1}{2}.\left(1-x\right)=1-\frac{2}{3}\)
\(\frac{1}{2}.\left(1-x\right)=\frac{1}{3}\)
\(1-x=\frac{1}{3}:\frac{1}{2}\)
\(1-x=\frac{1}{3}\times2\)
\(1-x=\frac{2}{3}\)
\(x=1-\frac{2}{3}\)
\(x=\frac{1}{3}\)
Vậy \(x=\frac{1}{3}\)
_HT_
Xin lỗi , mình gửi lại câu trả lời !
\(\frac{1}{2}.\left(1-x\right)+\frac{2}{3}=-1\)
\(\frac{1}{2}.\left(1-x\right)=\left(-1\right)-\frac{2}{3}\)
\(\frac{1}{2}.\left(1-x\right)=-\frac{5}{3}\)
\(1-x=-\frac{5}{3}:\frac{1}{2}\)
\(1-x=-\frac{10}{3}\)
\(x=1-\left(-\frac{10}{3}\right)\)
\(x=\frac{13}{3}\)
Vậy \(x=\frac{13}{3}\)
_HT_