Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không mất tính tổng quát giả sử x \(\le\)y
BĐT tương đương \(\frac{1}{1+x^2}-\frac{1}{1+xy}\ge\frac{1}{1+xy}-\frac{1}{1+y^2}\)
quy đồng và rút gọn ta được \(\frac{x}{\left(1+x^2\right)}\ge\frac{y}{1+y^2}\)
suy ra \(x\left(1+y^2\right)\ge y\left(1+x^2\right)\)
Phá ngoặc, chuyển vế, phân tích nhân tử ta được (y - x)(xy - 1) \(\ge\)0 (1)
vì x, y\(\ge\)1 và y \(\ge\)x nên (1) luôn đúng. (đpcm)
Cách 1:Ta có: \(2\left(1+a^2\right)\ge\left(1+a\right)^2\)
\(\Rightarrow\frac{1}{\left(1+a\right)^2}\ge\frac{1}{\left[2\left(1+a^2\right)\right]}\)
\(\Rightarrow\frac{1}{\left(1+x\right)^2}+\frac{1}{1+y^2}\ge\frac{1}{\left[2\left(1+x^2\right)\right]}+\frac{1}{\left[2\left(1+y^2\right)\right]}\)
mà: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}=\frac{2+x^2+y^2}{1+x^2y^2+x^2+y^2}\)
\(\Rightarrow\frac{1}{1+x^2}+\frac{1}{1+y^2}=\frac{\left[2.\left(1+xy\right)+\left(x-y\right)^2\right]}{\left(1+xy\right)^2+\left(x-y\right)^2}\)
\(\Rightarrow\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge2.\frac{1+xy}{\left(1+xy\right)^2}\)
\(\Rightarrow\frac{1}{\left[2\left(1+x^2\right)\right]}+\frac{1}{\left[2\left(1+y^2\right)\right]}\ge\frac{1}{1+xy}\)
\(\Rightarrow\frac{1}{\left(1+x\right)^2}+\frac{1}{1+y^2}\ge\frac{1}{1+xy}\)
1) Biến đồi tương đương:
\(\left(x^2+y^2\right)^2\ge8\left(x-y\right)^2\)
\(\Leftrightarrow\left(x^2+y^2\right)^2\ge8xy\left(x-y\right)^2\)
\(\Leftrightarrow\left(x^2-4xy+y^2\right)^2\ge0\)(đúng)
2) Sửa đề: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\left(\text{với }xy\ge1\right)\)
\(\Leftrightarrow\frac{\left(x-y\right)^2\left(xy-1\right)}{\left(x^2+1\right)\left(y^2+1\right)\left(xy+1\right)}\ge0\) (đúng)
Ta có: \(VT=\left(x-y\right)\left(x^2+xy+y^2\right)-x^3+y=x^3-y^3-x^3+y\)
\(=-y^3+y=y-y^3=y\left(1-y^2\right)=VP\)
\(\Rightarrowđpcm\)