Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-schwarz ta có:
\(P=\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ca}\ge\frac{9}{3+ab+bc+ca}\ge\frac{9}{3+12}=\frac{3}{5}\)
Dấu " = " xảy ra <=> a=b=c=2
Áp dụng BĐT AM-GM,ta có:
\(P\ge3\sqrt[3]{\frac{1}{\left(1+ab\right)\left(1+bc\right)\left(1+ca\right)}}=\frac{3}{\sqrt[3]{\left(1+ab\right)\left(1+bc\right)\left(1+ca\right)}}\)
\(\ge\frac{3}{\frac{\left(3+ab+bc+ca\right)}{3}}=\frac{9}{3+ab+bc+ca}\)
Ta có BĐT \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (đúng)
Áp dụng vào,ta có: \(P\ge\frac{9}{3+ab+bc+ca}\ge\frac{9}{3+a^2+b^2+c^2}=\frac{9}{15}=\frac{3}{5}\)
\(\hept{\begin{cases}\frac{x}{x-1}+\frac{2y}{y+1}=3\\\frac{x}{x+1}+\frac{y}{y-1}=2\end{cases}}\)\(ĐKXĐ:x,y\ne\pm1\)
\(< =>\hept{\begin{cases}\frac{x\left(y+1\right)}{\left(x-1\right)\left(y+1\right)}+\frac{\left(x-1\right)2y}{\left(x-1\right)\left(y+1\right)}=3\\\frac{x\left(y-1\right)}{\left(x+1\right)\left(y-1\right)}+\frac{y\left(x+1\right)}{\left(x+1\right)\left(y-1\right)}=2\end{cases}}\)
\(< =>\hept{\begin{cases}\frac{xy+x}{xy+x-y-1}+\frac{2xy-2y}{xy+x-y-1}=3\\\frac{xy-x}{xy-x+y-1}+\frac{xy+y}{xy-x+y-1}=2\end{cases}}\)
\(< =>\hept{\begin{cases}\frac{xy+x+2xy-2y}{xy+x-y-1}=3\\\frac{xy-x+xy+y}{xy-x+y-1}=2\end{cases}}\)
\(< =>\hept{\begin{cases}\frac{3xy+x-2y}{xy+x-y-1}=3\\\frac{2xy-x+y}{xy-x+y-1}=2\end{cases}}\)
\(< =>\hept{\begin{cases}3xy+x-2y=3xy+3x-3y-3\\2xy-x+y=2xy-2x+2y-2\end{cases}}\)
\(< =>\hept{\begin{cases}3xy+x-2y-3xy-3x+3y+3=0\\2xy-x+y-2xy+2x-2y+2=0\end{cases}}\)
\(< =>\hept{\begin{cases}-2x+y+3=0\\x-y+2=0\end{cases}}\)
\(< =>\hept{\begin{cases}-2\left(-2+y\right)+y+3=0\left(1\right)\\x=-2+y\left(2\right)\end{cases}}\)
\(\left(1\right)< =>4-2y+y+3=0\)
\(< =>7-y=0< =>y=7\left(tmđk\right)\)
\(\left(2\right)< =>x=-2+7=5\left(tmđk\right)\)
Vậy nghiệm của hệ phương trình trên là \(\left\{5;7\right\}\)
1+1=2 nha ban k mk nha
100 nha đúng thì kick