Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải chi tiết theo kiểu tìm công thức SHTQ thì như sau:
Đề thế này phải ko bạn: \(\left\{{}\begin{matrix}u_0=1\\u_n=\dfrac{2}{u_{n-1}}+1\end{matrix}\right.\)
Ta biến đổi: \(u_n=\dfrac{u_{n-1}+2}{u_{n-1}}\Leftrightarrow u_n+1=\dfrac{u_{n-1}+2}{u_{n-1}}+1=\dfrac{2\left(u_{n-1}+1\right)}{u_{n-1}}\)
\(\Leftrightarrow\dfrac{1}{u_n+1}=\dfrac{1}{2}\left(\dfrac{u_{n-1}}{u_{n-1}+1}\right)=\dfrac{1}{2}\left(\dfrac{u_{n-1}+1-1}{u_{n-1}+1}\right)=\dfrac{1}{2}-\dfrac{1}{2}\dfrac{1}{u_{n-1}+1}\)
Tới đây ta đặt \(v_n=\dfrac{1}{u_n+1}\Rightarrow\left\{{}\begin{matrix}v_0=\dfrac{1}{u_0+1}=\dfrac{1}{2}\\v_n=\dfrac{1}{2}-\dfrac{1}{2}v_{n-1}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}v_0=\dfrac{1}{2}\\v_n-\dfrac{1}{3}=-\dfrac{1}{2}\left(v_{n-1}-\dfrac{1}{3}\right)\end{matrix}\right.\) \(\Rightarrow\) đặt \(x_n=v_n-\dfrac{1}{3}\Rightarrow\left\{{}\begin{matrix}x_0=\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{1}{6}\\x_n=-\dfrac{1}{2}x_{n-1}\end{matrix}\right.\)
\(\Rightarrow x_n=\dfrac{1}{6}\left(\dfrac{-1}{2}\right)^n\) \(\Rightarrow v_n=\dfrac{1}{3}+\dfrac{1}{6}\left(\dfrac{-1}{2}\right)^n=\dfrac{2^{n+1}+\left(-1\right)^n}{3.2^{n+1}}\)
\(\Rightarrow u_n=\dfrac{1}{v_n}-1=\dfrac{2.2^{n+1}+\left(-1\right)^{n+1}}{2^{n+1}+\left(-1\right)^n}\)
\(\Rightarrow limu_n=lim\dfrac{2.2^{n+1}+\left(-1\right)^{n+1}}{2^{n+1}+\left(-1\right)^n}=lim\dfrac{2+\dfrac{\left(-1\right)^{n+1}}{2^{n+1}}}{1+\dfrac{\left(-1\right)^n}{2^{n+1}}}=\dfrac{2+0}{1+0}=2\)
gọi n là số người trong bữa tiệc
gọi \(a_i\text{ là số cái bắt tay của người thứ i với tất các những người khác}\)
ta có \(\Sigma_{i=1}^n\text{ }a_i\text{ là một số chẵn }\)( do mỗi cái bắt tay đều được tính bởi cả hai người )
mà tổng số cái bắt tay của người bắt tay với chẵn người là số chẵn
nên tổng số cái bắt tay của người bắt tay với lẻ người cũng là số chẵn
nên phải có chẵn người trong nhóm bắt tay với lẻ người
vậy ta có điều phải chứng minh
nếu đề đúng
\(f'\left(x\right)=\frac{3}{2}x^2+m^2-4\)
\(f''\left(x\right)=3x\)
Để f(x) đạt cực đại tại x=1 <=> \(\hept{\begin{cases}f'\left(1\right)=0\\f''\left(1\right)< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{3}{2}+m^2-4=0\\3.1< 0\end{cases}}\)vô lí
Vậy ko tồn tại m
1 + 1 = 2 , lại là lớp 12 =D .
= 2 nhe