Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ui, đề thi HSG huyện mình nè. cậu huyện nào mà đăng thế
chứng minh BĐT : \(a^3+b^3+1\ge ab\left(a+b\right)\) với a>0,b>0
\(\Rightarrow a^3+b^3+1\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)
áp dụng BĐT trên,ta có:
\(x+y+1\ge\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)\)
\(\Rightarrow\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{x+z+1}\le\frac{1}{\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)}+\frac{1}{\sqrt[3]{yz}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)}+\frac{1}{\sqrt[3]{xz}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)}\)
\(=\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{\sqrt[3]{xyz}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)}=1\)
Dấu " = " xảy ra khi x = y = z = 1
Ap dung bdt \(a+b\ge\sqrt[3]{a^2b}+\sqrt[3]{ab^2}\left(a,b\ge0\right)\)
ta co \(x+y\ge\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}\right)\)
ma \(xyz=1=>\sqrt[3]{xy}=\frac{1}{\sqrt[3]{z}}\)
nen \(x+y\ge\frac{\sqrt[3]{x}+\sqrt[3]{y}}{\sqrt[3]{z}}\)
=> \(x+y+1\ge\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{\sqrt[3]{z}}\)
=>\(\frac{1}{x+y+1}\le\frac{\sqrt[3]{z}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}\)
chung minh tuong tu cung co \(\frac{1}{x+z+1}\le\frac{\sqrt[3]{y}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}\) va \(\frac{1}{z+y+1}\le\frac{\sqrt[3]{x}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}\)
cong 3 bdt cung chieu ta duoc
\(\frac{1}{x+y+1}+\frac{1}{x+z+1}+\frac{1}{y+z+1}\le\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}=1\)
dau = xay ra khi x=y=z=1
Chuc ban hoc tot !!!
ai chs thì kb olm. r mk nt xin tên nik sau. cảm ơn ạ
Dễ ẹt 6 ngón tay (ko có ngón cái) - lóng tay (1 ngón) còn 6 ngón
1 + 1 = 2
mk bt nhưng ko rõ lắm
hok tốt
1+1=2
undertale nghĩa là ĐẢM NHẬN
CHÚC BẠN HỌC TỐT !