Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
\(\left(3n-5\right)⋮\left(n+1\right)\)
\(\Rightarrow3\left(n+1\right)-8⋮\left(n+1\right)\)
Vì 3 (n + 1 ) chia hết cho ( n + 1 )
nên 8 chia hết cho ( n + 1 )
\(\Rightarrow n+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Ta có bảng sau:
n+1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
n | 0 | -2 | 1 | -3 | 3 | -5 | 7 | -9 |
Vậy \(n\in\left\{0;-2;1;-3;3;-5;7;-9\right\}\)
(3n+5)chia hết cho (n+1)
=> 3n+3+2 chia hết cho (n+1)
=> 2 chia hết cho (n+1)
=> n+1 = { -2;-1;1;2}
=> n={-3;-2;0;1}
\(\frac{n+4}{n+1}=\frac{n+1+3}{n+1}=1+\frac{3}{n+1}\)
\(n+4⋮n+1\) khi \(3⋮n+1\Rightarrow n+1=\left\{-3;-1;1;3\right\}\Rightarrow n=\left\{-4;-2;0;2\right\}\)
Gọi 3 số nguyêntố đó là: a, b, c
Ta có: 5(a+b+c)
=>abc chia hết cho 5, do a,b,c nguyên tố
=>chỉ có trường hợp 1 trong 3 số bằng 5, giả sử a=5
=>bc=b+c+5=>(b-1)(c-1)=6
trương hợp 1: b - 1 = 1=>b=2;c - 1 = 6=>c=7
trường hợp 2: b - 1= 2, c - 1 = 3 =>c=4(loại)
vậy 3 số nguyên tố đó là: 2;5;7
(2/3×x-1/3)=2/3+1/3
(2/3×x-1/3)=3/3
2/3×x=3/3+1/3
2/3×x=4/3
x=4/3:3/2
x=4/3×2/3
x=8/9
<=> \(7x=5^2+3\)
<=> \(7x=28\)
<=> \(x=4\)
Vay x=4
chuc ban hoc tot !!!
6x + x = 511 : 59 + 31
7x = 52 + 3
7x = 25 + 3
7x = 28
x = 28 : 7
x = 4.
~ Chúc em học tốt nha ~ :3
ta có
\(S_2=\left(1-3\right)+\left(5-7\right)+..+\left(1997-1999\right)+2001\)
ha y \(S_2=-2-2-2..+2001=-2.500+2001=1001\)
\(S_3=\left(1-2-3+4\right)+\left(5-6-7+8\right)+..+\left(1997-1998-1999+2002\right)\)
hay \(S_3=0+0+..+0=0\)
\(S_2=\left(1-3\right)+\left(5-7\right)+...+\left(1997-1999\right)+2001\)
\(=\left(-2\right)+\left(-2\right)+....+\left(-2\right)+2001=\left(-2\right).500+2001=-1000+2001=1001\)
\(S_3=\left(0+1-2-3\right)+\left(4+5-6-7\right)+...+\left(1996+1997-1998-1999\right)+2000\)
\(=-4+\left(-4\right)+...+\left(-4\right)+2000=\left(-4\right).500+2000=0\)
Sửa đề thành : S=1+1/5+1/25+.........+1/15625
5xS=1+1/5+1/25+....+1/3125
5xS-S=(1+1/5+1/25+...+1/3125)-(1/5+1/25+1/125+....+1/15625)
4xS=1-1/15625=15624/15625
1xS=15624/15625:4=15624/15625x1/4=15624/62500=3906/15625
\(#040510\)
\(S=1+\dfrac{1}{5}+\dfrac{1}{25}+...+\dfrac{1}{15625}\)
\(5S=5+1+\dfrac{1}{5}+...+\dfrac{1}{3125}\)
\(5S-S=5-\dfrac{1}{15625}\)
\(S=\dfrac{5.15625-1}{4.15625}\)
\(S=\dfrac{78124}{4.15625}=\dfrac{19531}{15625}\)