Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)1*(1/2-1/3+1/3-1/4+.....+1/91-1/94)
1/2-1/94 ban tu tinh nhe
d)1*(1/1-1/4+1/4-1/7+......+1/91-1/94)
1-1/94 ban tu tinh nhe
tk nha
a) \(\frac{1}{n}-\frac{1}{n+1}\left(n\inℕ^∗\right)\)
\(\Leftrightarrow\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}\Leftrightarrow\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)
b) \(\frac{1}{n}-\frac{1}{n+3}\left(n\inℕ^∗\right)\)
\(\Leftrightarrow\frac{n+3}{n\left(n+3\right)}-\frac{n}{n\left(n+3\right)}=\frac{n+3-n}{n\left(n+3\right)}=\frac{3}{n\left(n+3\right)}\)
c,d dễ bn tách ra rồi trừ đi
=>S= 1- 1/4 + 1/4 -1/7 + 1/7 - 1/10 +...+ 1/n - 1/(n+3)
=>S= 1- 1/(n+3)
=>S + 1/(n+3) = 1
=>S<1
Ta có:
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n.\left(n+3\right)}\)
\(\Leftrightarrow S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)
\(\Leftrightarrow S=1-\frac{1}{n+3}\)
\(\Leftrightarrow S=\frac{n+3}{n+3}-\frac{1}{n+3}=\frac{n+3-1}{n+3}=\frac{n+2}{n+3}\)
\(\Rightarrow\frac{n+2}{n+3}< 1\Rightarrow S< 1\)
\(S=\frac{3}{1.4}+\frac{3}{4.7}+......+\frac{3}{n\left(n+3\right)}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{n}-\frac{1}{n+3}\)
\(=1-\frac{1}{n+3}\)
Ta có :
\(\frac{1}{n+3}>0\)
\(\Leftrightarrow-\frac{1}{n+3}< 0\)
\(\Leftrightarrow1-\frac{1}{n+3}< 1\)
\(\Leftrightarrow S< 1\left(đpcm\right)\)
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n.\left(n+3\right)}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)
\(S=1-\frac{1}{n+3}\)
\(S=\frac{n+2}{n+3}\)
Vi \(n\inℕ^∗\)nên \(n+2< n+3\)
DO đó\(\frac{n+2}{n+3}< 1\)
Vậy S <1
- S = \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)
- S = \(1-\frac{1}{n+3}\)
\(\Rightarrow\) S < 1 ( đpcm )
=> S = ( 1 -\(\frac{1}{4}\)) + ( \(\frac{1}{4}\)- \(\frac{1}{7}\)) +(\(\frac{1}{7}\)- \(\frac{1}{10}\)) +.....+ (\(\frac{1}{n}\)- \(\frac{1}{n+3}\))
=> S = 1 - \(\frac{1}{4}\)+\(\frac{1}{4}\)- \(\frac{1}{7}\)+ \(\frac{1}{7}\)- \(\frac{1}{10}\)+......+ \(\frac{1}{n}\)- \(\frac{1}{n+3}\)
=> S = 1 - \(\frac{1}{n+3}\)
vậy S = 1- \(\frac{1}{n+3}\)
S=1/1-1/4+1/4-1/7+.........+1/N-1/N+1
=1/1-(1/4-1/4)+...............+(1/N-1/N)-1/N+1
=1-1/N+1
->S<1
NHA!
1) Ta có: A=\(\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}\right)=\)
=\(\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\)
=\(\frac{1}{3}\left(1-\frac{1}{x+3}\right)=\frac{1}{3}.\frac{x+2}{x+3}=\frac{125}{376}\)
<=> \(\frac{x+2}{x+3}=\frac{375}{376}\)<=> 376(x+2)=375(x+3) <=> 376x+752=375x+1125 => X=373
3. ( 1/1.4 +1/4.7 +1/7.10 +...+ 1/x.(x+3)
3/1.4 +1/4.7+1/7.10 + ...+ 3/ x . (x+3)
1/1 - 1/4 + 1/4 - 1/6 + 1/7 - 1/10 + ...+ 1/x-1/x+3
1/1 - 1/x+3
x+3/x+3 - 1/x+3
x+2/x+3
Ta có : \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{n\left(n+3\right)}=\frac{89}{270}\)
\(\Rightarrow\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{n\left(n+3\right)}=\frac{267}{270}\)
\(\Rightarrow1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{n}-\frac{1}{n+3}=\frac{267}{270}\)
\(\Rightarrow1-\frac{1}{n+3}=\frac{267}{270}\)
=> \(\frac{1}{n+3}=\frac{1}{90}\)
=> n + 3 = 90
=> n = 87
Nhân cả 2 vế với 3 ta được:
\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{n\left(n+3\right)}=\frac{89}{90}.\)
Vậy tử số của các phân số trên đã bằng hiệu của 2 thừa số ở mẫu số.(Ngoại trừ P/S\(\frac{89}{90}.\))
=> ta được:
\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{n}-\frac{1}{n+3}=\frac{89}{90}.\)
Rút gọn hết ta được :
\(1-\frac{1}{n+3}=\frac{89}{90}\)
\(\frac{1}{n+3}=1-\frac{89}{90}\)
\(\frac{1}{n+3}=\frac{1}{90}.\)
Vì 1=1 => n+3=90
n = 90-3
n=87
Vậy n=87.
Đ/S:87