Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(P=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2019}-\dfrac{1}{2020}=1-\dfrac{1}{2020}=\dfrac{2019}{2020}\)
mà \(2019< 2020\)nên P < 1 ( đpcm )
\(P=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2019.2021}\)
\(P=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2019}-\dfrac{1}{2021}\)
\(P=1-\dfrac{1}{2021}\)
\(P=\dfrac{2020}{2021}\)
Vì \(\dfrac{2020}{2021}< 1\) ⇒ \(P< 1\) ( điều phải chứng minh )
Lời giải:
Gọi tích trên là $A$
Xét thừa số tổng quát: $1+\frac{1}{n(n+2)}=\frac{n(n+2)+1}{n(n+2)}=\frac{(n+1)^2}{n(n+2)}$
Thay $n=1,2,3....,2019$ ta có:
$A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}....\frac{2020^2}{2019.2021}$
$=\frac{2^2.3^2...2020^2}{(1.3)(2.4)(3.5)...(2019.2021)}$
$=\frac{(2.3....2020)(2.3...2020)}{(1.2.3...2019)(3.4...2021)}$
$=2020.\frac{2}{2021}=\frac{4040}{2021}$
Sửa đề: A=(1+1/1*3)(1+1/2*4)*...*(1+1/2019*2021)
\(=\dfrac{2^2}{\left(2-1\right)\left(2+1\right)}\cdot\dfrac{3^2}{\left(3-1\right)\left(3+1\right)}\cdot...\cdot\dfrac{2020^2}{\left(2020-1\right)\left(2020+1\right)}\)
\(=\dfrac{2}{1}\cdot\dfrac{3}{2}\cdot...\cdot\dfrac{2020}{2019}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2020}{2021}=2020\cdot\dfrac{2}{2021}=\dfrac{4040}{2021}\)
1/1x3 + 1/3x5 + 1/5x7 + ...............................+ 1/97x99
=1-1/3 + 1/3 - 1/5 + 1/5 - 1/7 +.............................+ 1/97-1/99
=1-1/99
=98/99
Đặt A=1/1*3+1/3*5+..+1/99*101
A=2/2*(1/1*3+1/3*5+...+1/99*101)
A=1/2*(2/1*3+2/3*5+..+2/99*101)
A=1/2*(1/1-1/3+1/3-1/5+...+1/99-1/100)
A=1/2*(1/1-1/100)
A=1/2*99/100
A=99/200
50/101 nha
Ai chưa có người yêu thì k và kết bạn với mình nhé
Đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{2019\cdot2021}\)
\(2A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+....+\frac{2}{2019\cdot2021}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{2019}-\frac{1}{2021}\)
\(2A=1-\frac{1}{2021}=\frac{2020}{2021}\)
\(A=\frac{2020}{2021}:2=\frac{2020\cdot2}{2021}=\frac{4040}{2021}\)
bn
Tran Le Khanh Linh lm sai r nếu chia 2 thì 2021.2 chứ ko phải 2020.2