Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=\(1+3^2+3^4+...+3^{100}\)
9B=\(3^2+3^4+...+3^{100}\)
9B-B=\(\left(3^2+3^4+...+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
8B=\(3^{102}-1\)
B=\(\left(3^{102}-1\right):8\)
C=\(1+5^3+5^6+...+5^{99}\)
125C=\(5^3+5^6+5^9+...+5^{102}\)
125C-C=\(\left(5^3+5^6+5^9+...+5^{102}\right)-\left(1+5^3+5^6+...+5^{99}\right)\)
124C=\(5^{102}-1\)
C=\(\left(5^{102}-1\right):124\)
(1 + 2) : 3
= 1 x (2 + 3) - 4
= (1 + 2) x 3 : (4 + 5)
= 1 - 2 - 3 + 4 - 5 + 6
= (1 + 2) : 3 + 4 - 5 - 6 + 7
= [(1 : 2 + 3) x 4 - 5 + 6 - 7] : 8
= 1 __ 2 __ 3 __ 4 __ 5 __ 6 __ 7 __ 8 __ 9 (không biết)
= 1
#)Giải :
\(A=1+2+2^2+...+2^{100}\)
\(2A=2+2^2+2^3+...+2^{101}\)
\(2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)
\(A=2^{101}-1\)
\(B=1+3^2+3^4+...+3^{100}\)
\(3^2B=3^2+3^4+3^6+...+3^{102}\)
\(3^2B-B=\left(3^2+3^4+3^6+...+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
\(8B=3^{102}-1\)
\(B=\frac{3^{102}-1}{8}\)
\(C=1+5^3+5^6+...+5^{99}\)
\(5^2C=5^3+5^6+5^9+...+5^{102}\)
\(5^2C-C=\left(5^3+5^6+5^9...+5^{102}\right)-\left(1+5^3+5^6+...+5^{99}\right)\)
\(24C=5^{102}-1\)
\(C=\frac{5^{102}-1}{24}\)
a) A = 1 + 22 + ... + 2100
=> 2A = 22 + 23 + ... + 2101
Lấy 2A - A = (2 + 22 + ... + 2101) - (1 + 22 + ... 2100)
A = 2101 - 1
b) B = 1 + 32 + 34 + ... + 3100
=> 32B = 32 + 34 + 36 + ..... + 3102
=> 9B = 32 + 34 + 36 + ..... + 3102
Lấy 9B - B = ( 32 + 34 + 36 + ..... + 3102) - (1 + 32 + 34 + ... + 3100)
8B = 3102 - 1
B = \(\frac{3^{102}-1}{8}\)
c) C = 1 + 53 + 56 + ... + 599
=> 53.C = 53 . 56 . 59 + ... + 5102
=> 125.C = 53 . 56 . 59 + ... + 5102
Lấy 125.C - C = (53 . 56 . 59 + ... + 5102) - (1 + 53 + 56 + ... + 599)
124.C = 5102 - 1
=> C = \(\frac{5^{102}-1}{124}\)
câu nào dạng cũng giống nhau, ko biết 1 câu là ko giải đc toàn bộ
A = 1 . 3 + 3 . 5 + 5 . 7 + ... + 49 . 51
A=1*51
A=
B = 2 . 4 + 4 . 6 + 6 . 8 + ... + 98 . 100
B=2*100
B=200
C = 1 . 4 + 4 . 7 + 7 . 10 + ... + 301 . 304
C=1*304
C=304
D = 1 + 1 . 1! + 2 . 2! + 3 . 3! + ... + 100 . 100!
D=1*100!
D=100!
E = 22 + 42 + ... + ( 2n )2
E=\(2^2\cdot2n^2\)
E=\(2n^4\)
6)
(19-x)-46=-12
19-x=-12+46
19-x=34
x=19-34
x=-15
7)=>x-2=0
x=0+2
x=2
8)=>5-x=2
x=5-2
x=3
9) đề thiếu
10)=>x+1=9
x=9-4
x=8
Ta có
\(2017-\left(\frac{1}{4}+\frac{2}{5}+\frac{3}{6}+\frac{4}{7}+...+\frac{2017}{2020}\right)\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{4}+\frac{2}{5}+...+\frac{2017}{2020}\right)\)
\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{2}{5}\right)+...+\left(1-\frac{2017}{2020}\right)\)
\(=\frac{3}{4}+\frac{3}{5}+....+\frac{3}{2020}\)
\(=\frac{3.5}{4.5}+\frac{3.5}{5.5}+\frac{3.5}{6.5}+...+\frac{3.5}{2020.5}\)
\(=3.5\left(\frac{1}{4.5}+\frac{1}{5.5}+\frac{1}{6.5}+...+\frac{1}{2020.5}\right)\)
\(=15.\left(\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\right)\)
Thế vào ta có
\(\frac{15.\left(\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\right)}{\frac{1}{20}+\frac{1}{25}+...+\frac{1}{10100}}=15\)
Được cập nhật 41 giây trước (17:23)
Ta có :
2017−(14 +25 +36 +47 +...+20172020 )
=(1+1+...+1)−(14 +25 +...+20172020 )
=(1−14 )+(1−25 )+...+(1−20172020 )
=34 +35 +....+32020
=3.54.5 +3.55.5 +3.56.5 +...+3.52020.5
=3.5(14.5 +15.5 +16.5 +...+12020.5 )
=15.(1
1+1+2+2+3+3+4+4+...+5+5+6+6
do 4 và 5 cách nhau 1 đơn vị nên dấu " ... " chỉ là đánh lừa
= 12+2232+42+52+62
= 1+4+9+16+25+36
= (1+9) + (4+16) + 25+35+1
= 10 + 20 + 60 + 1
= 30 + 60 + 1
= 90 + 1
= 91
Sai r bn