![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2015^2}=1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}\right)\)
\(=1-\left(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2015.2015}\right)>1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\right)\)
\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\right)\)
\(=1-\left(1-\frac{1}{2015}\right)=1-\frac{2014}{2015}=\frac{1}{2015}\)
=> \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2015^2}>\frac{1}{2015}\left(\text{đpcm}\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mẫu số = 2015/1 + 2014/2 + 2013/3 + ... + 1/2015
= (1 + 1 + ... + 1) + 2014/2 + 2013/3 + ... + 1/2015
2015 số 1
= (2014/2 + 1) + (2013/3 + 1) + ... + (1/2015 + 1) + 1
= 2016/2 + 2016/3 + ... + 2016/2015 + 2016/2016
= 2016 × (1/2 + 1/3 + ... + 1/2015 + 1/2016)
=> phân số đề bài cho = 1/2016
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{2}{\frac{1}{1+2}+\frac{1}{1+2+3}+....+\frac{1}{1+2+3+....+2015}}\)
\(=2:\left[2.\left(\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2015.2016}\right)\right]\)
\(=2:\left[2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\right)\right]\)
\(=2:\left[2.\left(\frac{1}{2}-\frac{1}{2016}\right)\right]=2:\left[\frac{2.1007}{2016}\right]=\frac{2}{\frac{1007}{2008}}=\frac{2016}{1007}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\dfrac{B}{A}=\dfrac{\dfrac{1}{2016}+\dfrac{2}{2015}+\dfrac{3}{2014}+...+\dfrac{2015}{2}+\dfrac{2016}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{1+\left(1+\dfrac{2015}{2}\right)+\left(1+\dfrac{2014}{3}\right)+...+\left(1+\dfrac{2}{2015}\right)+\left(1+\dfrac{1}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2015}+\dfrac{2017}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=2017\)