K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2016

Nếu ko cần trình bày thì dùng Pascal mà làm

 

13 tháng 10 2019

bạn ghi rõ đề ra được không

a: \(=\left(\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right)\cdot\dfrac{2x^2-x^3}{x^2-3x}\)

\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^2\left(2-x\right)}{x\left(x-3\right)}\)

\(=\dfrac{-4x^2-8x}{x+2}\cdot\dfrac{-x}{x-3}\)

\(=\dfrac{-4x\left(x+2\right)}{x+2}\cdot\dfrac{-x}{x-3}=\dfrac{4x^2}{x-3}\)

b: \(=\dfrac{2x-1}{2x+1}:\left(2x-1+\dfrac{2-4x}{2x+1}\right)\)

\(=\dfrac{2x-1}{2x+1}:\dfrac{4x^2-1+2-4x}{2x+1}\)

\(=\dfrac{2x-1}{4x^2-4x+1}=\dfrac{1}{2x-1}\)

c: \(=\left(\dfrac{1}{1-x}-1\right):\left(x+1-\dfrac{2x-1}{x-1}\right)\)

\(=\dfrac{1-1+x}{1-x}:\dfrac{x^2-1-2x+1}{x-1}\)

\(=\dfrac{-x}{x-1}\cdot\dfrac{x-1}{x\left(x-2\right)}=\dfrac{-1}{x-2}\)

21 tháng 7 2015

Dễ dàng chứng minh điều sau bằng biến đổi tương đương:\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2}=1+\frac{1}{n}-\frac{1}{n+1}\)

Áp dụng: 

\(M=1+\frac{1}{1}-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{2015}-\frac{1}{2016}\)

\(=2016-\frac{1}{2016}\)

 

30 tháng 7 2019

Gọi vế trái BPT là A.

Xét biểu thức tổng quát:

\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{\left[n\left(n+1\right)\right]^2}}\\ =\frac{\sqrt{n^2\left(n^2+2n+1\right)+n^2+2n+1+n^2}}{n\left(n+1\right)}\\ =\frac{\sqrt{n^4+2n^3+3n^2+2n+1}}{n\left(n+1\right)}\\ =\frac{\sqrt{\left(n^2+n+1\right)^2}}{n\left(n+1\right)}\\ =\frac{n^2+n+1}{n\left(n+1\right)}\\ =\frac{n\left(n+1\right)+n+1-n}{n\left(n+1\right)}\\ =1+\frac{1}{n}-\frac{1}{n+1}\)

Suy ra:

\(A=1+\frac{1}{1}-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{2017}-\frac{1}{2018}\)

\(=\left(1+1+...+1\right)+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\right)\) (2018 số hạng 1)

\(=2018+\frac{1}{2}-\frac{1}{2018}< 2018\)

Vậy \(A< 2018\left(đpcm\right)\).

Chúc bạn học tốt nhaok.

30 tháng 7 2019

cảm ơn bạn nhé, mình đag ko bt cách chứng minh biểu thức tổng quát ;)

17 tháng 9 2020

Mình giúp phần a thôi, phần b chir là áp dụng không có gì khó cả.

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a+b+c}{abc}\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\left(a+b+c=0\right)\)

\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\left(đpcm\right)\)

17 tháng 9 2020

b, \(A=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+...+\sqrt{1+\frac{1}{399^2}+\frac{1}{400^2}}\)

\(A=\sqrt{\frac{1}{1^2}+\frac{1}{1^2}+\frac{1}{\left(-2\right)^2}}+\sqrt{\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{\left(-3\right)^2}}+...+\sqrt{\frac{1}{1^2}+\frac{1}{399^2}+\frac{1}{\left(-400\right)^2}}\)

có 1 + 1 - 2 = 1 + 2 - 3 = ... + 1 + 399 - 400 = 0

nên theo câu a ta có : 

\(A=\left|1+\frac{1}{1}-\frac{1}{2}\right|+\left|1+\frac{1}{2}-\frac{1}{3}\right|+...+\left|1+\frac{1}{399}-\frac{1}{400}\right|\)

A = 1 + 1 -1/2 + 1 + 1/2 - 1/3 + 1 + 1/3 - 1/4 + ... + 1 + 1/399 - 1/400

= 400  1/400

= 159999/400

28 tháng 6 2018

Bài này có 2 cách!!

29 tháng 6 2018

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\)\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2\left(a+b+c\right)}{abc}}\)=\(\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\)\(|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)

\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}=\sqrt{1+\frac{1}{2^2}+\frac{1}{\left(-3\right)^2}}\)\(=|\frac{1}{1}+\frac{1}{2}+\frac{1}{-3}|=1+\frac{1}{2}-\frac{1}{3}\)

Tương tự ta có M=\(1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{99}-\frac{1}{100}\)=\(98+\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)\(=98+\frac{1}{2}-\frac{1}{100}=\frac{9849}{100}\)