Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2014}{2015}.\frac{2015}{2016}\)
A=\(\frac{1.2.3.4...2015}{2.3.4...2016}=\frac{1}{2016}\)
Hok tốt
A = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2015}\right).\left(1-\frac{1}{2016}\right)\)
= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2014}{2015}.\frac{2015}{2016}\)
= \(\frac{1}{2016}\)
Vậy ...
\(2B=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}\)
\(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}+\frac{1}{2^{2018}}\)
\(\Rightarrow B=2B-B=2-\frac{1}{2^{2018}}\)
A=1/1.2+1/3.4+...+1/2017.2018
A=1-1/2+1/3-1/4+1/5-....+1/2017-1/2018
Bạn để riêng 2 nhóm có dấu trừ và cộng
A=(1+1/3+1/5+...+1/2017) - (1/2+1/4+1/6+...+1/2018)
A= M - N
A= M+N-2N
M=1+1/3+1/5+...+1/2017
Ta có \(\frac{1}{9S}=\frac{9^{2017}+\frac{1}{9}}{9^{2017}+1}\)= \(\frac{9^{2017}+1-\frac{8}{9}}{9^{2017}+1}=1-\frac{\frac{8}{9}}{9^{2017}+1}\)
\(\frac{1}{9M}=\frac{9^{2016}+\frac{1}{9}}{9^{2016}+1}\)= \(\frac{9^{2016}+1-\frac{8}{9}}{9^{2016}+1}=1-\frac{\frac{8}{9}}{9^{2016}+1}\)
Vì \(9^{2016}+1< 9^{2017}+1\)=> \(\frac{\frac{8}{9}}{9^{2016}+1}>\frac{\frac{8}{9}}{9^{2017}+1}\)
=> \(1-\frac{\frac{8}{9}}{9^{2016}+1}< 1-\frac{\frac{8}{9}}{9^{2017}+1}\)=> \(\frac{1}{9}S< \frac{1}{9}M\Rightarrow S< M\)
\(\Rightarrow\)\(\frac{2}{6}\)+ \(\frac{2}{12}\)+ \(\frac{2}{20}\)+...+\(\frac{2}{x\left(x+1\right)}\)= \(\frac{2011}{2013}\)
\(\Rightarrow\)\(\frac{2}{2.3}\)+ \(\frac{2}{3.4}\)+ \(\frac{2}{4.5}\)+...+ \(\frac{2}{x\left(x+1\right)}\)= \(\frac{2011}{2013}\)
\(\Rightarrow\)\(\frac{1}{2}\)- \(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{4}\)+...+ \(\frac{1}{x}\)- \(\frac{1}{x+1}\)= \(\frac{2011}{2013}\): 2
\(\Rightarrow\)\(\frac{1}{2}\)- \(\frac{1}{x+1}\)= \(\frac{2011}{4026}\)
\(\Rightarrow\)\(\frac{1}{x+1}\)= \(\frac{1}{2}\)- \(\frac{2011}{4026}\)= \(\frac{1}{2013}\)
\(\Rightarrow\)\(x+1=2013\)
\(1)\) Ta có :
\(\left|5x-2\right|\le0\)
Mà : \(\left|5x-2\right|\ge0\) \(\left(\forall x\inℝ\right)\)
Suy ra : \(\left|5x-2\right|=0\)
\(\Leftrightarrow\)\(5x-2=0\)
\(\Leftrightarrow\)\(5x=2\)
\(\Leftrightarrow\)\(x=\frac{2}{5}\)
Vậy \(x=\frac{2}{5}\)
Chúc bạn học tốt ~
\(2)\) Nhận xét ( nhận xét này mình lấy từ cô Huyền -_- có ghi bản quyền ròi nhá ) :
Khi hai số nguyên cùng là bội của nhau thì hoặc hai số đó bằng nhau hoặc đối nhau.
Ta có :
\(\orbr{\begin{cases}n-1=n+5\\n-1=-n-5\end{cases}\Leftrightarrow\orbr{\begin{cases}n-n=5+1\\n+n=-5+1\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}0=6\left(loai\right)\\2n=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}0=6\left(loai\right)\\n=\frac{-4}{2}=-2\end{cases}}}\)
Vậy \(n=-2\)
Chúc bạn học tốt ~
;-;;
*disappear*
dư dấu cộng ròi ko tính dc:))