1.1        Cho ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2021

https://thi.tuyensinh247.com/de-thi-thu-vao-lop-10-mon-toan-lan-3-phong-gddt-gia-loc-2016-c31a28113.html

a: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AD\cdot AB=AE\cdot AC\)

3 tháng 9

Đề bài tóm tắt:

  • Tam giác \(A B C\) vuông tại \(A\), với \(A B < A C\).
  • \(A H\) là đường cao từ \(A\) xuống \(B C\).
  • \(D , E\) lần lượt là hình chiếu của \(H\) lên \(A B\) và \(A C\).

a) Chứng minh: \(A D \cdot A B = A E \cdot A C\)


Phân tích:

  • \(D\) là hình chiếu của \(H\) trên \(A B\), nên \(H D \bot A B\).
  • \(E\) là hình chiếu của \(H\) trên \(A C\), nên \(H E \bot A C\).
  • Ta cần chứng minh tích đoạn thẳng: \(A D \times A B = A E \times A C\).

Cách chứng minh:

  1. Xét tam giác vuông \(A B C\) vuông tại \(A\), ta có \(A H\) là đường cao nên các tam giác nhỏ tạo ra đều có tỉ lệ thuận.
  2. Vì \(D\) là hình chiếu \(H\) trên \(A B\), nên \(H D \bot A B\), do đó \(H D\) là đường cao trong tam giác \(A H B\). Tương tự \(H E\) là đường cao trong tam giác \(A H C\).
  3. Trong tam giác \(A H B\), theo định lý về đường cao trong tam giác vuông, ta có:

\(A D = A H \cdot cot ⁡ \left(\right. \angle H A B \left.\right)\)

Tương tự trong tam giác \(A H C\):

\(A E = A H \cdot cot ⁡ \left(\right. \angle H A C \left.\right)\)

  1. Vì \(A B < A C\) và tam giác vuông tại \(A\), nên \(\angle H A B\) và \(\angle H A C\) liên hệ với các cạnh \(A B , A C\).
  2. Từ các góc và tỉ số, ta có:

\(\frac{A D}{A E} = \frac{A B}{A C}\)

Suy ra:

\(A D \cdot A C = A E \cdot A B\)

Đổi vế thành:

\(A D \cdot A B = A E \cdot A C\)


b) Trên tia đối của tia \(A B\) lấy điểm \(F\) sao cho \(A F < A B\); vẽ hình chữ nhật \(A C G F\)\(B G\)cắt \(A C\) tại \(N\).

Yêu cầu: Chứng minh ...

NV
2 tháng 9

a.

Do D, E là hình chiếu của H lên AB, AC \(\Rightarrow\angle ADH=\angle AEH=90^0\)

Tam giác ABC vuông tại A nên \(\angle A=90^0\)

=>ADHE là hình chữ nhật (tứ giác có 3 góc vuông)

\(\Rightarrow\angle ADE=\angle AHE\)

\(\angle AHE=\angle ACB\) (cùng phụ ∠CAH)

\(\Rightarrow\angle ADE=\angle ACB\)

Xét hai tam giác ADE và ACB có:

∠A là góc chung

∠ADE=∠ACB (cmt)

=>ΔADE∼ΔACB(g.g)

\(\Rightarrow\frac{AD}{AC}=\frac{AE}{AB}\Rightarrow AD.AB=AE.AC\)

b.

Do ACGF là hcn nên CG||AF =>∠CGN=∠GBF (so le trong)

\(\Rightarrow\cos\angle CGN=\cos\angle GBF\)

\(\Rightarrow\frac{CG}{GN}=\frac{BF}{BG}\)

Mà ACGF là hcn nên CG=AF \(\Rightarrow\frac{AF}{GN}=\frac{BF}{BG}\) (1)

Trong tam giác vuông BGF, áp dụng định lý Pitago:

\(GF^2+BF^2=BG^2\Rightarrow AC^2+BF^2=BG^2\) (do ACGF là hcn nên GF=AC)

\(\Rightarrow\frac{AC^2}{BG^2}+\left(\frac{BF}{BG}\right)^2=1\) (2)

(1);(2) \(\Rightarrow\frac{AC^2}{BG^2}+\frac{AF^2}{GN^2}=1\Rightarrow\frac{1}{BG^2}+\frac{AF^2}{AC^2}\cdot\frac{1}{GN^2}=\frac{1}{AC^2}\)

Trong tam giác vuông ACF, ta có \(\cot CFB=\frac{AF}{AC}=>\frac{AF^2}{AC^2}=\cot^2CFB\)

\(\Rightarrow\frac{\cot^2CFB}{GN^2}+\frac{1}{BG^2}=\frac{1}{AC^2}\)

NV
2 tháng 9

15 tháng 5 2021

Hình tự vẽ nha

a) Vì A,B,D thuộc ( O; AD/2 ) 

\(\Rightarrow\widehat{ABD}=90^0\)

Vì \(EF\perp AD\Rightarrow\widehat{EFA}=90^0\)

Xét tứ giác  ABEF có góc \(\widehat{ABE}=\widehat{AFE}=90^0\)

mà 2 góc này ở vị trí đối nhau trong tứ giác ABEF

\(\Rightarrow ABEF\)nội tiếp ( dhnb )

b)  Vì A,C,D thuộc ( O; AD/2 ) 

\(\Rightarrow\widehat{ECD}=90^0\) 

Xét tứ giác EFDC có: \(\widehat{ECD}=\widehat{EFD}=90^0\)

Mà 2 góc này ở vị trí đối nhau trong tứ giác EFDC

\(\Rightarrow EFDC\)nội tiếp

\(\Rightarrow\widehat{ECF}=\widehat{EDF}\)( cùng chắn cung EF )

Lại có: \(\widehat{BCA}=\widehat{BDA}\left(=\frac{1}{2}sđ\widebat{AB}\right)\)

\(\Rightarrow\widehat{BCA}=\widehat{ACF}\)

=> AC là phân giác góc BCF 

DD
21 tháng 10 2021

\(y=3x+m\)(*) 

1) a) Đồ thị hàm số (*) đi qua \(A\left(-1,3\right)\)nên \(3=3.\left(-1\right)+m\Leftrightarrow m=6\).

b)  Đồ thị hàm số (*) đi qua \(B\left(-2,5\right)\)nên \(5=3.\left(-2\right)+m\Leftrightarrow m=11\).

2) Đồ thị hàm số (*) cắt trục hoành tại điểm có hoành độ \(3x+m=0\Leftrightarrow x=-\frac{m}{3}\)

Suy ra \(-\frac{m}{3}=-3\Leftrightarrow m=9\).

3) Đồ thị hàm số (*) cắt trục tung tại điểm có tung độ \(y=3.0+m=m\)

suy ra \(m=-5\).

6 tháng 3 2022

Xét (O) có 

^ABC = 900 ( góc nr chắn nửa đường tròn ) 

=> ^ABD' = 900

=> AD' là đường kính của đường tròn (O') ; B là điểm thuộc đường tròn 

=> A;O';D thẳng hàng