Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2014}{2015}.\frac{2015}{2016}\)
A=\(\frac{1.2.3.4...2015}{2.3.4...2016}=\frac{1}{2016}\)
Hok tốt
A = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2015}\right).\left(1-\frac{1}{2016}\right)\)
= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2014}{2015}.\frac{2015}{2016}\)
= \(\frac{1}{2016}\)
Vậy ...
\(\left|x-200\right|\)có 2 trường hợp
Trường hợp 1 : \(x-200\ge0\)
Biểu thức trở thánh :
\(x-200+360=0\)
\(\Rightarrow x=-160\)
Trường hợp 2 \(x-200< 0\)
Biểu thức trở thành :
\(200-x+360=0\)
\(\Rightarrow x=560\)
\(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(=\frac{1}{3\cdot6}+\frac{1}{6\cdot9}+\frac{1}{9\cdot12}+...+\frac{1}{30\cdot33}\)
\(=\frac{1}{3}\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\frac{3}{9\cdot12}+...+\frac{3}{30\cdot33}\right)\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(=\frac{1}{3}\cdot\frac{10}{33}=\frac{10}{99}\)
\(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(=\frac{1}{3}.\frac{10}{33}\)
\(=\frac{10}{99}\)
Số cần tìm là :
\(1+1=2\)
Đáp số: 2
= 2 nhé