K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2021

A nhé nhưng chị mình đồn là 1+1=3

7 tháng 12 2021

B vì:

Gỉa sử ta có đẳng thức:

\(14+6-20=21+9-30\)

Đặt thừa số chung, ta có:

\(2\times\left(7+3-10\right)=3\times\left(7+3-10\right)\)

Theo toán học thì hai tích bằng nhau và có thừa số thứ hai bằng nhau thì thừa số thứ nhất bằng nhau.

Do đó

\(2=3\)

29 tháng 6 2016

\(a.A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\) 

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)

\(2A-A=1-\frac{1}{2^{99}}\)

\(A=1-\frac{1}{2^{99}}< 1\)

\(b.B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)

\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6A=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(6A-2A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{303}{3^{100}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{203}{3^{100}}< 3\)

\(A< \frac{3}{4}\)

Ủng hộ mk nha ^_^

8 tháng 3 2019

\(A=\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+..........+\frac{1}{8}.\frac{1}{9}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{8.9}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.......+\frac{1}{8}-\frac{1}{9}=\frac{1}{2}-\frac{1}{9}=\frac{7}{18}\)

\(B=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+....+\frac{1}{110}=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+.....+\frac{1}{10.11}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-.....+\frac{1}{10}-\frac{1}{11}=\frac{1}{4}-\frac{1}{11}=\frac{7}{44}\)

\(\text{c,d cơ bản tự làm nha }\)

8 tháng 3 2019

A=>1.1/2.3+1.1/3.4+1.1/4.5+1.1/5.6+1.11/6.7+.1/7.8+1.1/8.9

=>1/2.3+1/3.4+1/4.5+1/6.7+1/7.8+1/8.9

=>1/2-1/3-1/4-1/5-1/6-1/7-1/8-1/9

=>1/2-1/9=>9/18-2/18=>7/18

Vậy A= 7/18

23 tháng 1 2018

A = (-2-1) . (3-1)

A = (-3) . 2

A = -6

B = (-22-2) . (22-3)

B = (4 -2) . (4 - 3)

B = 2 . 1

B = 2

C= (-12-1) . (3.-2 -2)

C= (1-1) . (-6-2)

C= 0 . (-4)

C= 0

23 tháng 1 2018

Giải:

+ Với \(a=-2\)\(b=3\), ta có:

\(A=\left(-2-1\right)\left(3-1\right)\)

\(\Leftrightarrow A=-3.2=-6\)

Vậy ...

+ Với \(a=-2\)\(b=2\), ta có:

\(B=\left[\left(-2\right)^2-2\right]\left(2^2-3\right)\)

\(\Leftrightarrow B=\left(4-2\right)\left(4-3\right)\)

\(\Leftrightarrow B=2.1=2\)

Vậy ...

+ Với \(a=-1\)\(b=-2\), ta có:

\(C=\left[\left(-1\right)^2-1\right]\left[3.\left(-2\right)-2\right]\)

\(\Leftrightarrow C=\left(1-1\right)\left(-6-2\right)\)

\(\Leftrightarrow C=0.\left(-8\right)=0\)

Vậy ...

9 tháng 8 2018

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\right)\)

\(A=1-\frac{1}{2^{20}}\)

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{21}}\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{20}}\)

\(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{20}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{21}}\right)\)

\(2B=1-\frac{1}{3^{21}}\)

\(B=\frac{1-\frac{1}{3^{21}}}{2}\)

\(C=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{19\cdot20\cdot21}\)

\(C=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{19\cdot20\cdot21}\right)\)

\(C=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{19\cdot20}-\frac{1}{20\cdot21}\right)\)

\(C=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{20\cdot21}\right)\)

\(C=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{420}\right)\)

\(C=\frac{1}{2}\cdot\frac{209}{420}\)

\(C=\frac{209}{480}\)

16 tháng 11 2021

4333344

21 tháng 1 2022

?reeeeeeeeeeee

3 tháng 3 2017

Bài 1:

\(\dfrac{5}{x} - \dfrac{y}{3} =\dfrac{1}{6}\)

\(\Rightarrow\dfrac{1}{6}+\dfrac{y}{3}=\dfrac{5}{x}\)

\(\Rightarrow\dfrac{1}{6}+\dfrac{2y}{6}=\dfrac{5}{x}\)

\(\Rightarrow1+\dfrac{2y}{6}=\dfrac{5}{x}\)

\(\Rightarrow x.\left(1+2y\right)=30\)

\(2y\) chẵn nên \(1+2y\) lẻ

\(\Rightarrow1+2y\in\left\{\pm1;\pm3;\pm5;\pm30\right\}\)

\(\Rightarrow x\in\left\{\pm10;\pm30;\pm6;\pm2\right\}\)

3 tháng 3 2017

Bài 2:

\(\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{\left(2n-2\right).2n}\)

\(=\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{\left(2n-2\right).2n}\right).\dfrac{1}{2}\)

\(=\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{12}+...+\dfrac{1}{2n-2}-\dfrac{1}{2n}\right).\dfrac{1}{2}\)

\(=\left(\dfrac{1}{2}-\dfrac{1}{2n}\right).\dfrac{1}{2}\)

\(=\dfrac{1}{4}-\dfrac{1}{2n.2}< \dfrac{1}{4}\)

\(\Rightarrow\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{4}\left(đpcm\right)\)