![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=1+\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}.\)
\(B=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{99}+\frac{1}{100}\)
\(B=1+1-\frac{1}{100}=2-\frac{1}{100}\)
\(B=\frac{199}{100}\)
\(C=\frac{1}{1.2}+\frac{1}{2.3}+........+\frac{1}{n\left(n+1\right)}\)
\(C=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{n}-\frac{1}{n+1}\)
\(C=1-\frac{1}{n+1}\)
\(C=\frac{n+1-1}{n+1}=\frac{n}{n+1}\)
Áp dụng công thức tình dãy số ta có :
\(D=\frac{\left[\left(n-1\right):1+1\right].\left(n+1\right)}{2}=\frac{n.\left(n+1\right)}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{2011.2012}\)
\(=4\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}\right)\)
\(=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\right)\)
\(=4\left(1-\frac{1}{2012}\right)\)
\(=4.\frac{2011}{2012}\)
\(=\frac{2011}{503}\)
b. \(x.\left(x+1\right)=132\)
\(\Rightarrow x^2+x=132\)
\(\Leftrightarrow x=11\)
c. \(\left(1+4+7+...+100\right):x=17\)
\(\Rightarrow\frac{\left(100+1\right).34}{2}=17x\)
\(\Rightarrow1717=17x\)
\(\Rightarrow x=101\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
\(S=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+..............+\dfrac{1}{99.100}\)
\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...........+\dfrac{1}{99}-\dfrac{1}{100}\)
\(S=1-\dfrac{1}{100}=\dfrac{99}{100}\)
\(\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{99x100}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
=\(1-\frac{1}{100}\)
=\(\frac{99}{100}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{2^{12}x3^5-4^6.9^2}{\left(2^2x3\right)^6+8^4x3^5}=\frac{2^{12}x3^5+\left(2^2\right)^6x\left(3^2\right)^2}{2^{12}x3^6+\left(2^3\right)^4x3^5}\)
\(=\frac{2^{12}x3^5-2^{12}x3^4}{2^{12}x3^6+2^{12}x3^5}=\frac{2^{12}x3^4x\left(3-1\right)}{2^{12}x3^5x\left(3+1\right)}\)
\(=\frac{2}{3.4}=\frac{1}{3.2}=\frac{1}{6}\)
b) \(\frac{1}{9x10}-\frac{1}{8x9}-\frac{1}{7x8}-\frac{1}{6x7}-\frac{1}{5x6}-\frac{1}{4x5}-\frac{1}{3x4}-\frac{1}{2x3}-\frac{1}{1x2}\)
\(=-\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}+\frac{1}{6x7}+\frac{1}{7x8}+\frac{1}{8x9}+\frac{1}{9x10}\right)\)
\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=-\left(1-\frac{1}{10}\right)\)
\(=\frac{-9}{10}\)
sorry bn nha! mk ko bk lm phần c
![](https://rs.olm.vn/images/avt/0.png?1311)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}< 1\Rightarrowđpcm\)
\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
Mà : \(\frac{99}{100}< 1\)
Vậy : S < 1
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{5}{12}+\dfrac{19}{30}\)
\(=\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{5}{12}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{19}{30}\right)\)
\(=1+1=2\)
Chúc bạn học tốt!!!
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..+\dfrac{1}{1998.1999}+\dfrac{1}{1999.2000}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{1998}-\dfrac{1}{1999}+\dfrac{1}{1999}-\dfrac{1}{2000}\)
\(=1-\dfrac{1}{2000}=\dfrac{1999}{2000}.\)
square ?
mũ 2