\(10x^2+3x-6=2\left(3x+1\right)\sqrt{2x^2-1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 1 2024

ĐKXĐ: \(\left[{}\begin{matrix}x\ge\dfrac{1}{\sqrt{2}}\\x\le-\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)

 Pt\(\Leftrightarrow8x^2-4-2\left(3x+1\right)\sqrt{2x^2-1}+2x^2+3x-2=0\)

\(\Leftrightarrow4\left(2x^2-1\right)-2\left(3x+1\right)\sqrt{2x^2-1}+2x^2+3x-2=0\)

Đặt \(\sqrt{2x^2-1}=t\)

\(\Rightarrow4t^2-2\left(3x+1\right)t+2x^2+3x-2=0\)

Coi pt trên là pt bậc 2 ẩn t tham số x, ta có:

\(\Delta'=\left(3x+1\right)^2-4\left(2x^2+3x-2\right)=x^2-6x+9=\left(x-3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{3x+1+x-3}{4}=\dfrac{2x-1}{2}\\t=\dfrac{3x+1-\left(x-3\right)}{4}=\dfrac{x+2}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{2x^2-1}=\dfrac{2x-1}{2}\\\sqrt{2x^2-1}=\dfrac{x+2}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{2x^2-1}=2x-1\left(\text{với }x\ge\dfrac{1}{2}\right)\\2\sqrt{2x^2-1}=x+2\left(\text{với }x\ge-2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4\left(2x^2-1\right)=\left(2x-1\right)^2\left(\text{với }x\ge\dfrac{1}{2}\right)\\4\left(2x^2-1\right)=\left(x+2\right)^2\left(\text{với }x\ge-2\right)\end{matrix}\right.\) 

\(\Leftrightarrow\left[{}\begin{matrix}4x^2+4x-5=0\left(\text{với }x\ge\dfrac{1}{2}\right)\\7x^2-4x-8=0\left(\text{với }x\ge-2\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1+\sqrt{6}}{2}\\x=\dfrac{-1-\sqrt{6}}{2}< \dfrac{1}{2}\left(loại\right)\\x=\dfrac{2+2\sqrt{15}}{7}\\x=\dfrac{2-2\sqrt{15}}{7}\end{matrix}\right.\)

NV
3 tháng 1 2019

1/ Đặt \(\sqrt{x^2+2}=t>0\Rightarrow x^2=t^2-2\)

\(t^2-2+\left(3-t\right)x-1-2t=0\)

\(\Leftrightarrow t^2-2t-3-\left(t-3\right)x=0\)

\(\Leftrightarrow\left(t-3\right)\left(t+1\right)-\left(t-3\right)x=0\)

\(\Leftrightarrow\left(t-3\right)\left(t+1-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t-3=0\\t+1-x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}t=3\\t=x-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2}=3\left(1\right)\\\sqrt{x^2+2}=x-1\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x^2=7\Rightarrow x=\pm\sqrt{7}\)

\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x^2+2=\left(x-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2+2=x^2-2x+1\end{matrix}\right.\) \(\Rightarrow x=\dfrac{-1}{2}\left(l\right)\)

Vậy nghiệm pt là \(x=\pm\sqrt{7}\)

2/

\(x^2+3-6x\sqrt{x^2+3}+9x^2-\sqrt{x^2+3}+3x-2=0\)

\(\Leftrightarrow\left(\sqrt{x^2+3}-3x\right)^2-\left(\sqrt{x^2+3}-3x\right)-2=0\)

Đặt \(\sqrt{x^2+3}-3x=t\)

\(\Rightarrow t^2-t-2=0\) \(\Rightarrow\left[{}\begin{matrix}t=-1\\t=2\end{matrix}\right.\)

TH1: \(\sqrt{x^2+3}-3x=-1\Rightarrow\sqrt{x^2+3}=3x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-1\ge0\\x^2+3=\left(3x-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\8x^2-6x-2=0\end{matrix}\right.\) \(\Rightarrow x=1\)

TH2: \(\sqrt{x^2+3}-3x=2\Leftrightarrow\sqrt{x^2+3}=3x+2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-2}{3}\\x^2+3=\left(3x+2\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-2}{3}\\8x^2+12x+1=0\end{matrix}\right.\) \(\Rightarrow x=\dfrac{-3+\sqrt{7}}{4}\)

NV
3 tháng 1 2019

3/ ĐKXĐ: \(\dfrac{3}{2}\le x\le\dfrac{5}{2}\)

\(1.\sqrt{2x-3}+1.\sqrt{5-2x}\le\sqrt{\left(1^2+1^2\right)\left(2x-3+5-2x\right)}=2\)

\(\Rightarrow VT\le2\)

\(VP=3\left(x^2-4x+4\right)+2=3\left(x-2\right)^2+2\ge2\)

\(\Rightarrow VT=VP\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\2x-3=5-2x\end{matrix}\right.\) \(\Rightarrow x=2\)

Vậy pt có nghiệm duy nhất \(x=2\)

4/

ĐKXĐ: \(x\ge\dfrac{-5}{4}\)

\(x^2-2x+1+4x+5-6\sqrt{4x+5}+9=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{4x+5}-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\sqrt{4x+5}-3=0\end{matrix}\right.\) \(\Rightarrow x=1\)

Vậy pt có nghiệm duy nhất \(x=1\)

Y
25 tháng 7 2019

1. \(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x}-2\right|+\left|3-\sqrt{x}\right|=1\)

+ Ta có : \(\left|\sqrt{x}-2\right|+\left|3-\sqrt{x}\right|\ge\left|\sqrt{x}-2+3-\sqrt{x}\right|=1\)

Dấu "=" \(\Leftrightarrow\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)\ge0\)

\(\Leftrightarrow2\le\sqrt{x}\le3\Leftrightarrow4\le x\le9\)

2. + \(ĐK:4-2x-x^2\ge0\)

+ VT = \(\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+9}\)

\(=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\) \(\ge\sqrt{4}+\sqrt{9}=5\) (1)

Dấu "=" \(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

+ VP \(=-\left(x^2+2x+1\right)+5=-\left(x+1\right)^2+5\le5\forall x\) (2)

Dấu "=" \(\Leftrightarrow x=-1\)

+ Từ (1) và (2) suy ra : pt \(\Leftrightarrow VT=VP=5\Leftrightarrow x=-1\) (TM)

3. + TH1: \(x< 0\) ta có :

\(VT< \sqrt[3]{2.0+1}+\sqrt[3]{0}=1\) ( KTM )

+ TH2 : x = 0 ta có :

\(VT=\sqrt[3]{1}+\sqrt[3]{0}=1\) ( TM )

+ TH3 : x > 0 ta có :

\(VT>\sqrt[3]{2.0+1}+\sqrt[3]{0}=1\) ( KTM )

Vậy x = 0 là nghiệm duy nhất của pt

4. \(\Leftrightarrow\left(x-1\right)\left(x+4\right)\left(x-2\right)\left(x+3\right)-24=0\)

\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2+2x-8\right)-24=0\)

\(\Leftrightarrow t\left(t-5\right)-24=0\) ( với \(t=x^2+2x-3\) )

\(\Leftrightarrow t^2-5t-24=0\Leftrightarrow\left(t+3\right)\left(t-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-3\\t=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+2x-3=-3\\x^2+2x-3=8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\left(x+2\right)=0\\\left(x+1\right)^2=12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=2\sqrt{3}-1\\x=-2\sqrt{3}-1\end{matrix}\right.\) ( TM )

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

20 tháng 7 2018

câu a nè bạn: http://123link.pw/O59k8hdZ

20 tháng 7 2018

cho đúng nha

AH
Akai Haruma
Giáo viên
21 tháng 7 2018

a) ĐKXĐ: \(-1\leq x\leq 2\)

\(\sqrt{(1+x)(2-x)}=1+2x-2x^2\)

\(\Leftrightarrow \sqrt{2+x-x^2}=1+2x-2x^2=-3+2(2+x-x^2)\)

Đặt \(\sqrt{2+x-x^2}=t(t\geq 0)\). PT trở thành:

\(t=-3+2t^2\)

\(\Leftrightarrow 2t^2-t-3=0\Leftrightarrow (2t-3)(t+1)=0\)

\(\Rightarrow t=\frac{3}{2}\) (do \(t\geq 0)\)

\(\Rightarrow 2+x-x^2=\frac{9}{4}\Rightarrow x^2-x+\frac{1}{4}=0\)

\(\Leftrightarrow (x-\frac{1}{2})^2=0\Rightarrow x=\frac{1}{2}\) (thỏa mãn)

AH
Akai Haruma
Giáo viên
21 tháng 7 2018

b) ĐK: \(x\geq \frac{1}{3}\)

PT \(\Leftrightarrow \sqrt{(3x-1)+6\sqrt{3x-1}+9}+\sqrt{(3x-1)-6\sqrt{3x-1}+9}=3x+4\)

\(\Leftrightarrow \sqrt{(\sqrt{3x-1}+3)^2}+\sqrt{(\sqrt{3x-1}-3)^2}=3x+4\)

\(\Leftrightarrow \sqrt{3x-1}+3+|\sqrt{3x-1}-3|=3x+4\)

\(\Leftrightarrow |\sqrt{3x-1}-3|=3x-\sqrt{3x-1}+1\)

Nếu \(\sqrt{3x-1}\geq 3\):

\(\Rightarrow \sqrt{3x-1}-3=3x-\sqrt{3x-1}+1\)

\(\Leftrightarrow 3x+4-2\sqrt{3x-1}=0\)

\(\Leftrightarrow (3x-1)-2\sqrt{3x-1}+5=0\)

\(\Leftrightarrow (\sqrt{3x-1}-1)^2+4=0\) (vô lý)

Nếu \(\sqrt{3x-1}< 3\):

\(\Rightarrow 3-\sqrt{3x-1}=3x-\sqrt{3x-1}+1\)

\(\Leftrightarrow 3x=2\Rightarrow x=\frac{2}{3}\) (thỏa mãn)

Vậy...........

1 tháng 7 2019

2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)

\(\Rightarrow x=3\)

1 tháng 7 2019

c,\(pt\Leftrightarrow3\left(x-1\right)+\frac{x-1}{4x}+\left(2-\sqrt{3x+1}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}\right)=0\)

\(\Rightarrow x=1\)

\(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}=0\)

bạn làm nốt pần này nhá

30 tháng 11 2019

Violympic toán 9

1 tháng 12 2019

Violympic toán 9