Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Tìm n thuộc Z, biết n+2 chia hết cho n-1 - Nguyễn Thủy Tiên
a) ta có : n+6 chia hết n-1
<=> n-1+7 chia hết cho n-1
mà n-1 chia hết cho n-1
=> 7 chia hết cho n-1
n-1= Ư(7) = { -1 ; -7 ;1;7)
=> n = {0 ; -6 ; 2 ; 8
b) 2n + 15 chia hết cho n+5
<=> 2n + 10 + 5 chia hết cho n+5
<=> 2(n+5) + 5 chia hết n+5
mà 2(n+5) chia hết n+5
=> n+5 = Ư(5) = { -5 ; -1 ; 1; 5 )
=> n= {-10 ; -6 ; -4 ; 0}
c) 10n + 23 chia hết 2n +1
<=> 10n +5 + 18 chia hết 2n+1
<=> 5(2n+1) + 18 chia hết 2n+1
mà 5(2n+1) chia hết cho 2n+1
=> 2n +1 = Ư(18) = { ....}
=> n = ....
d) 20 chia hết 2n+1
=> 2n+1 = Ư(20) = {....}
=> n={...}
e) tương tự d)
f ) 2n+3 là ước của 10
mà Ư(10) = { -10;-5;-2;-1;1;2;5;10}Ư
=> n = {...}
g) n(n+1) = 6
Ta có : 6 = 2 . 3
=> n = 2
( câu c;d;f tự tính mấy cái .... nha , tương tự câu a;b thôi )
Cảm ơn nha nhưng cho mình hỏi ở câu c. Tại sao: 10n lại chuyển thành 5(2n+1)
hằng đẳng thức: a^n - b^n = (a-b)[a^(n-1).b + a(n-2).b² +..+ b^(n-1)] = (a-b).p
* 5^2n - 2^n = 25^n - 2^n = (25-2)p = 23p => 5.5^2n - 5.2^n = 5.23.p
=> 5^(2n+1) - 5.2^n = 5.23p chia hết cho 23
* 2^(n+4) + 2^(n+1) = 2^n.2^4 + 2^n.2 = 2^n(2^4 + 2) = 18.2^n = 23.2^n - 5.2^n
Vậy: 5^(2n+1) + 2^(n+4) + 2^(n+1) = 5^(2n+1) - 5.2^n + 23.2^n chia hết cho 23
~Hok tốt`
Bài 1
n + 2 ⋮ n + 1
n + 1 + 1 ⋮ n + 1
1 ⋮ n + 1
n + 1 \(\in\) Ư(1) = {-1; 1}
n \(\in\) {-2; 0}
Vì n \(\in\) N nên n = 0
Vậy n = 0
Bài 2:
2n + 7 ⋮ n + 1
2(n + 1) + 5 ⋮ n + 1
5 ⋮ n + 1
n + 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) {-6; -2; 0; 4}
Vì n \(\in\) N nên n \(\in\) {0; 4}
Vậy n \(\in\) {0; 4}
n + 5 \(⋮\)n - 1
=> n - 1 + 6 \(⋮\)n - 1 mà n - 1 \(⋮\)n - 1 => 6 \(⋮\)n - 1
=> n - 1 thuộc Ư ( 6 ) = { - 6 ; - 3 ; - 2 ; - 1 ; 1 ; 2 ;3 ; 6 }
=> n thuộc { - 5 ; - 2 ; - 1 ; 0 ; 2 ; 3 ; 4 ; 7 }
10n+23\(⋮\)1+2n
=>5(2n+1)+18\(⋮\)2n+1
vì 5(2n+1)\(⋮\)2n+1
=>18\(⋮\)2n+1
=>2n+1\(\in\)\([18]\)