\(10+(90+10^2\) x \(2)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

MT
17 tháng 6

10+(90+10^2×2)+700

=10+(90+100×2)+700

=10+(90+200)+700

=10+290+700

=300+700

=1000

ta có: \(10+90+10^2\cdot2+700\)

\(=100+100\cdot2+700\)

=100+200+700

=300+700

=1000

10 tháng 4 2018

a) \(10^{n+1}-6.10^n\)

\(=10^n.10-6.19^n\)

\(=10^n.\left(10-6\right)\)

\(=10^n.4\)

b) \(2^{n+3}+2^{n+2}-2^{n+1}+2^n\)

\(=2^n.2^3+2^n.2^2-2^n.2+2^n.1\)

\(=2^n.\left(2^3+2^2-2+1\right)\)

\(=2^n.11\)

c) \(90.10^k-10^{k+2}+10^{k+1}\)

\(=90.10^k-10^k.10^2+10^k.10\)

\(=10^k.\left(90-10^2+10\right)\)

\(=0\)

d) \(2,5.5^{n-3}.10+5^n-6.5^{n-1}\)

\(=\dfrac{2,5.5^n.10}{5^3}+5^n-\dfrac{6.5^n}{5}\)

\(=\dfrac{5^n}{5}+5^n-\dfrac{6.5^n}{5}\)

\(=\dfrac{5^n+5^{n+1}-6.5^n}{5}=\dfrac{5^n+5^n.5-6.5^n}{5}=\dfrac{5^n\left(1+5-6\right)}{5}=\dfrac{0}{5}=0\)

16 tháng 12 2017

\(a,2^{24}\)\(3^{36}.\)

Ta có:

\(2^{24}=2^{2.12}=\left(2^2\right)^{12}=4^{12}.\)

\(3^{36}=3^{3.12}=\left(3^3\right)^{12}=27^{12}.\)

\(4^{12}< 27^{12}\left(4< 27\right)\Rightarrow2^{24}< 3^{36}.\)

Vậy.....

\(b,10^{20}\)\(90^{10}.\)

Ta có:

\(10^{20}=10^{2.10}=\left(10^2\right)^{10}=100^{10}.\)

\(90^{10}=90^{10}.\)

\(100^{10}>90^{10}\left(100>90\right)\Rightarrow10^{20}>90^{10}.\)

Vậy.....

\(c,2^{332}\)\(3^{223}.\)

Ta có:

\(2^{332}< 2^{333}=2^{3.111}=\left(2^3\right)^{111}=8^{111}.\)

\(3^{223}>3^{222}=3^{2.111}=\left(3^2\right)^{111}=9^{111}.\)

\(8^{111}< 9^{111}\left(8< 9\right)\Rightarrow2^{332}< 3^{223}.\)

Vậy.....

16 tháng 10 2018

\(B=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{98}+\left(\dfrac{1}{2}\right)^{99}\)

\(\Rightarrow2B=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{97}+\left(\dfrac{1}{2}\right)^{98}\)

\(\Rightarrow2B-B=1-\left(\dfrac{1}{2}\right)^{99}\)

\(B=1-\left(\dfrac{1}{2}\right)^{99}\)

\(2,\)

\(a,\dfrac{45^{10}.2^{10}}{75^{15}}\)

\(=\dfrac{5^{10}.9^{10}.2^{10}}{25^{15}.3^{15}}\)

\(=\dfrac{5^{10}.3^{20}.2^{10}}{5^{30}.3^{15}}\)

\(=\dfrac{5^{10}.3^{15}.\left(3^5.2^{10}\right)}{5^{10}.3^{15}.\left(5^{20}\right)}\)

\(=\dfrac{3^5.2^{10}}{5^{20}}\)

\(b,\dfrac{2^{15}.9^4}{6^3.8^3}\)

\(=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)

\(c,\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{4^{10}.2^{10}+4^{10}}{4^4.2^4+4^4.4^7}=\dfrac{4^4.\left(4^6.2^{10}+4^6\right)}{4^4.\left(2^4+4^7\right)}\)

\(=\dfrac{4^{11}+4^6}{4^8.4^7}=\dfrac{4^6.\left(4^5+1\right)}{4^6.\left(4^2-4\right)}=\dfrac{1024+1}{16-4}=\dfrac{1025}{12}\)

\(d,\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)

\(3,\)

\(a,\left(2x+4\right)^2=\dfrac{1}{4}\)

\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2=\left(\dfrac{-1}{2}\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}2x+4=\dfrac{1}{2}\\2x+4=\dfrac{-1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{2}-4=\dfrac{-7}{2}\\2x=\dfrac{-1}{2}-4=\dfrac{-9}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-7}{4}\\x=\dfrac{-9}{4}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{-7}{4};\dfrac{-9}{4}\right\}\)

\(b,\left(2x-3\right)^2=36\)

\(\left(2x-3\right)^2=6^2=\left(-6\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=6+3=9\\2x=-6+3=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{9}{2};\dfrac{-3}{2}\right\}\)

\(c,5^{x+2}=628\)

\(5^{x+2}=5^4\)

\(\Rightarrow x+2=4\)

\(\Rightarrow x=4-2=2\)

Vậy \(x=2\)

\(d,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)

\(\Rightarrow\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\)

\(\Rightarrow\left(x-1\right)^{x+2}.\left[\left(x-1\right)^2-1\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^2-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x-1=1\\x-1=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)

Vậy \(x\in\left\{0;1;2\right\}\)

16 tháng 10 2018

Bài 1:

B= \(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{99}\)

2B= \(2.[\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}]\)

2B= \(1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{98}\)

⇒2B-B= \(1-\left(\dfrac{1}{2}\right)^{99}\)

B= 1

Vậy B=1

Bài 2:

a, \(\dfrac{45^{10}.2^{10}}{75^{15}}\)= \(\dfrac{\left(3^2.5\right)^{10}.2^{10}}{\left(3.5^2\right)^{15}}=\dfrac{3^{20}.5^{10}.2^{10}}{3^{15}.5^{30}}=\dfrac{3^5.2^{10}}{5^{20}}\)

b, \(\dfrac{2^{15}.9^4}{6^3.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)

c,\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2.4\right)^{10}+4^{10}}{\left(2.4\right)^4+4^{11}}=\dfrac{2^{10}.4^{10}+4^{10}}{2^4.4^4+4^{11}}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6+4^6.4^5}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(4^5+1\right)}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(2^{10}+1\right)}=4^4=256\)

d, \(\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{\left(3^4\right)^{11}.3^{17}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)

Bài 3:

a, \(\left(2x+4\right)^2=\dfrac{1}{4}\)

\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2\)

\(2x+4=\dfrac{1}{2}\)

\(2x=\dfrac{1}{2}-4\)

\(2x=-\dfrac{7}{2}\)

\(x=-\dfrac{7}{2}:2\)

\(x=-\dfrac{7}{2}.\dfrac{1}{2}\)

\(x=-\dfrac{7}{4}\)

b, \(\left(2x-3\right)^2=36\)

\(\left(2x-3\right)^2=6^2\)

\(2x-3=6\)

\(2x=9\)

\(x=\dfrac{9}{2}\)

c, \(5^{x+2}=625\)

\(5^{x+2}=5^4\)

\(x+2=4\)

\(x=2\)

16 tháng 12 2017

a) ta có :\(2^{24}=\left(2^2\right)^{12}=4^{12}\)

\(3^{36}=\left(3^2\right)^{12}=9^{12}\)

Vì \(4^{12}< 9^{12}\left(4< 9\right)\)

Nên bạn tự kết luận 

b) ta có : \(10^{20}=\left(10^2\right)^{10}=100^{10}\)

Vì \(100^{10}>90^{10}\left(100>90\right)\)

Nên bạn tự kết luận

c) ta có : \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì \(8^{111}< 9^{111}\left(8< 9\right)\)

Nên bạn tự kết luận

16 tháng 12 2017

224=(22)12=412

336=(33)12=2712

Tự so sánh nhé 

phần sau tương tự

9 tháng 7 2018

\(\left(\frac{1}{2}-\frac{1}{3}\right)6^x+6^{x+2}=6^{10}+6^7\)

\(\Rightarrow\frac{1}{6}6^x+6^x.6^2=6^7\left(1+6^3\right)\)

\(\Rightarrow6^x\left(\frac{1}{6}+6^2\right)=6^7.217\)

\(\Rightarrow6^x.\frac{217}{6}=6^7.217\)

\(\Rightarrow6^x.217=6^7.217.6\)

\(\Rightarrow6^x.217=6^8.217\)

\(\Rightarrow6^x=6^8\)

\(\Rightarrow x=8\)

Vậy \(x=8\)

2: Ta có: |x-1|+|x-2|=5(1)

Trường hợp 1: x<1

(1) trở thành 1-x+2-x=5

=>-2x+3=5

=>-2x=2

hay x=-1(nhận)

Trường hợp 2: 1<=x<2

(1) trở thành x-1+2-x=5

=>1=5(vô lý)

Trường hợp 3: x>=2

(1) trở thành x-1+x-2=5

=>2x-3=5

hay x=4(nhận)

3: |x-3|+|x+1|=10(2)

Trường hợp 1: x<-1

(2) trở thành -x-1+3-x=10

=>-2x+2=10

=>-2x=8

hay x=-4(nhận)

Trường hợp 2: -1<=x<3

(2) trở thành x+1+3-x=10

=>4=10(vô lý)

Trường hợp 3: x>=3

(2) trở thành x-3+x+1=10

=>2x-2=10

hay x=6(nhận)

1 tháng 2 2024

Lalalalalalalalalalalalalalalala

a: \(\Leftrightarrow2^x\cdot\dfrac{1}{2}+2^x\cdot2=2^{10}\left(2^2+1\right)\)

\(\Leftrightarrow2^x=2^{10}\cdot5:\dfrac{5}{2}=2^{10}\cdot5\cdot\dfrac{2}{5}=2^{11}\)

=>x=11

b: \(\Leftrightarrow3^x\cdot\dfrac{1}{3}+3^x\cdot9=3^{13}\cdot28\)

\(\Leftrightarrow3^x=3^{13}\cdot28:\dfrac{28}{3}=3^{14}\)

hay x=14

a, 24-x=32=25

=> 4-x=5

<=> x=-1

b, (x+1,5)2+(y-2,5)10=0

Vì (x+1,5)2\(\ge\)0,   (y-2,5)10\(\ge\)0

\(\Rightarrow\hept{\begin{cases}x+1,5=0\\y-2,5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1,5\\y=2,5\end{cases}}}\)

5 tháng 7 2019

a)\(2^{4-x}\)=32

=>\(2^{4-x}\)=32=\(2^5\)

=>4-x=5

=>x=4-5=-1

=>x=-1