Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
91.
PT $\sin x=a$ có nghiệm khi $\max (\sin x)\geq a\geq \min (\sin x)$
$\Leftrightarrow 1\geq a\geq -1$
Hay $a\in [-1;1]$
93.
$\sin (\pi\cos x)=1$
$\Rightarrow \pi\cos x=\pi (\frac{1}{2}+2k)$
$\Leftrightarrow \cos x=2k+\frac{1}{2}$ (trong đó $k$ là số nguyên)
Vì $\cos x\in [-1;1]$ nên $2k+\frac{1}{2}\in [-1;1]$
Vì $k$ nguyên nên $k=0$
$\Rightarrow \cos x=2k+\frac{1}{2}=\frac{1}{2}$
$\Rightarrow x=\pm \frac{\pi}{3}+2n\pi$ với $n$ nguyên.
ngại viết quá hihi, mà hơi ngáo tí cái dạng này lm rồi mà cứ quên
bài trước mk bình luận bạn đọc chưa nhỉ
ĐKXĐ: ...
a/ \(\frac{sin2x}{cos2x}+\frac{cosx}{sinx}=8cos^2x\)
\(\Leftrightarrow sin2x.sinx+cos2x.cosx=8cos^2x.sinx.cos2x\)
\(\Leftrightarrow cosx=4sin2x.cos2x.cosx\)
\(\Leftrightarrow cosx=2sin4x.cosx\)
\(\Leftrightarrow cosx\left(2sin4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin4x=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)
b/ \(\frac{cosx}{sinx}-\frac{sinx}{cosx}+4sin2x=\frac{1}{sinx.cosx}\)
\(\Leftrightarrow cos^2x-sin^2x+4sin2x.sinx.cosx=1\)
\(\Leftrightarrow cos2x+2sin^22x=1\)
\(\Leftrightarrow cos2x+2\left(1-cos^22x\right)=1\)
\(\Leftrightarrow-2cos^22x+cos2x+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos2x=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)
1c/
\(5sinx-2=3\left(1-sinx\right)\frac{sin^2x}{1-sin^2x}\)
\(\Leftrightarrow5sinx-2=\frac{3sin^2x}{1+sinx}\)
\(\Leftrightarrow\left(5sinx-2\right)\left(1+sinx\right)=3sin^2x\)
\(\Leftrightarrow5sin^2x+3sinx-2=3sin^2x\)
\(\Leftrightarrow2sin^2x+3sinx-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=-2\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=...\)
Bài 2:
a/ \(\Leftrightarrow\frac{\left(m+1\right)\left(1-cos2x\right)}{2}-sin2x+cos2x=0\)
\(\Leftrightarrow2sin2x+\left(m-1\right)cos2x=m+1\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(4+\left(m-1\right)^2\ge\left(m+1\right)^2\)
\(\Leftrightarrow4m\le4\Rightarrow m\le1\)
7.
Đặt \(\left|sinx+cosx\right|=\left|\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\right|=t\Rightarrow0\le t\le\sqrt{2}\)
Ta có: \(t^2=1+2sinx.cosx\Rightarrow sinx.cosx=\frac{t^2-1}{2}\) (1)
Pt trở thành:
\(\frac{t^2-1}{2}+t=1\)
\(\Leftrightarrow t^2+2t-3=0\)
\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
Thay vào (1) \(\Rightarrow2sinx.cosx=t^2-1=0\)
\(\Leftrightarrow sin2x=0\Rightarrow x=\frac{k\pi}{2}\)
\(\Rightarrow x=\left\{\frac{\pi}{2};\pi;\frac{3\pi}{2}\right\}\Rightarrow\sum x=3\pi\)
6.
\(\Leftrightarrow\left(1-sin2x\right)+sinx-cosx=0\)
\(\Leftrightarrow\left(sin^2x+cos^2x-2sinx.cosx\right)+sinx-cosx=0\)
\(\Leftrightarrow\left(sinx-cosx\right)^2+sinx-cosx=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\sinx-cosx=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\sin\left(x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=k\pi\\x-\frac{\pi}{4}=-\frac{\pi}{4}+k\pi\\x-\frac{\pi}{4}=\frac{5\pi}{4}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=k\pi\\x=\frac{3\pi}{2}+k\pi\end{matrix}\right.\)
Pt có 3 nghiệm trên đoạn đã cho: \(x=\left\{\frac{\pi}{4};0;\frac{\pi}{2}\right\}\)
72.
\(\Leftrightarrow sinx=m+1\)
Do \(-1\le sinx\le1\) nên pt có nghiệm khi và chỉ khi:
\(-1\le m+1\le1\)
\(\Leftrightarrow-2\le m\le0\)
73.
\(\Leftrightarrow cosx=m\)
Do \(-1\le cosx\le1\) nên pt vô nghiệm khi và chỉ khi: \(\left[{}\begin{matrix}m< -1\\m>1\end{matrix}\right.\)
107.
\(\Leftrightarrow tan2x=-\sqrt{3}\)
\(\Leftrightarrow2x=-\frac{\pi}{3}+k\pi\)
\(\Leftrightarrow x=-\frac{\pi}{6}+\frac{k\pi}{2}\)
\(2000\pi\le-\frac{\pi}{6}+\frac{k\pi}{2}\le2018\pi\)
\(\Leftrightarrow4000+\frac{1}{3}\le k\le4036+\frac{1}{2}\)
Có \(4036-4001+1=36\) nghiệm
108.
\(\Leftrightarrow\left[{}\begin{matrix}5x=\frac{\pi}{4}+k2\pi\\5x=-\frac{\pi}{4}+n2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{20}+\frac{k2\pi}{5}\\x=-\frac{\pi}{20}+\frac{n2\pi}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-50\pi\le\frac{\pi}{20}+\frac{k2\pi}{5}\le0\\-50\pi\le-\frac{\pi}{20}+\frac{n2\pi}{5}\le0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-125-\frac{1}{8}\le k\le-\frac{1}{8}\\-125+\frac{1}{8}\le n\le\frac{1}{8}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-125\le k\le-1\\-124\le n\le0\end{matrix}\right.\)
Có \(-1-\left(-125\right)+1+0-\left(-124\right)+1=250\) nghiệm
109.
\(\Leftrightarrow\left[{}\begin{matrix}2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}0< -\frac{\pi}{12}+k\pi< \pi\\0< \frac{7\pi}{12}+k\pi< \pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{1}{12}< k< \frac{13}{12}\\-\frac{7}{12}< k< \frac{5}{12}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}k=1\\k=0\end{matrix}\right.\) có 2 nghiệm
110.
\(\Leftrightarrow cos2x=-\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{2\pi}{3}+k2\pi\\2x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)
Ko có đáp án chọn nên ko thể bấm được, chỉ giải được tự luận thôi :)