Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sai roi x(x+2)-2=0 thi x(x+2)=2 thi x thuoc uoc cua 2 con x-2=2/x con lai thi re roi
Cái phép tính thứ 3 í, là 2 + 2.(0 + 2) hay là 2 + 2.0 + 2 dợ
1)\(\left(-8\right)^2=64\)
2)\(\left(-1,25\right)^2=1,56\)
3) \(3^5=243\)
4) \(2^5:2^3\Leftrightarrow2^{5-3}=2^2\)
5) \(\left(-4\right)^2\times\left(-4\right)=\left(-4\right)^{2+1}=\left(-4\right)^3\)
6) \(\left(\frac{2}{3}\right)^3\times\left(\frac{2}{3}\right)^2=\left(\frac{2}{3}\right)^{3+2}=\left(\frac{2}{3}\right)^5\)
6,1. = 64
2 . = 1,56
3 . =243
4 , = 22 = 4
5 , (-43) = -12
6, = 2/3 5 = 22 / 213
a) \(-\frac{2}{3}x=\left(-\frac{1}{2}\right)^2\)
\(\Leftrightarrow-\frac{2}{3}x=\frac{1}{4}\)
\(\Rightarrow x=-\frac{3}{8}\)
b) \(x\div\left(-\frac{2}{5}\right)^3=-\frac{2}{5}\)
\(\Leftrightarrow x=\left(\frac{2}{5}\right)^4\)
\(\Rightarrow x=\frac{16}{625}\)
c) \(2^x=32\)
\(\Leftrightarrow2^x=2^5\)
\(\Rightarrow x=5\)
d) \(\frac{16}{2^x}=2\)
\(\Leftrightarrow2^x=8=2^3\)
\(\Rightarrow x=3\)
e) \(\left(x-2\right)^2=9\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=3\\x-2=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
a, \(-\frac{2}{3}x=\left(-\frac{1}{2}\right)^2\Leftrightarrow-\frac{2}{3}x=\frac{1}{4}\Leftrightarrow x=-\frac{3}{8}\)
b, \(\frac{x}{-2,5^3}=-\frac{2}{5}\Leftrightarrow5x=\frac{125}{4}\Leftrightarrow x=\frac{25}{4}\)
c, \(2^x=32\Leftrightarrow2^x=2^5\Leftrightarrow x=5\)
d, mk chưa hiểu đề lăm
e, \(\left(x-2\right)^2=9\Leftrightarrow\orbr{\begin{cases}x-2=3\\x-2=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}}\)
Bài 1:
\(S=2^2+4^2+6^2+...+20^2\)
\(=\left(1\cdot2\right)^2+\left(2\cdot2\right)^2+\left(2\cdot3\right)^2+...+\left(2\cdot10\right)^2\)
\(=1\cdot2^2+2^2\cdot2^2+2^2\cdot3^2+...+2^2\cdot10^2\)
\(=2^2\left(1+2^2+3^2+...+10^2\right)\)
\(=4\cdot385=1540\)
Bài 2:
\(A=2^0+2^1+2^2+...+2^{100}\)
\(A=1+2+2^2+...+2^{100}\)
\(2A=2\left(1+2+2^2+...+2^{100}\right)\)
\(2A=2+2^2+2^3+...+2^{101}\)
\(2A=\left(2+2^2+...+2^{101}\right)-\left(1+2+...+2^{100}\right)\)
\(A=2^{101}-1\)
Giải:
\(1.\) \(S=2^2+4^2+6^2+....+20^2\)
\(2^2=\left(1.2\right)^2\)
\(4^2=\left(2.2\right)^2\)
\(...\)
Vế dưới \(= \left(1.2\right)^2 + \left(2.2\right)^2 + ...+ \left(9.2\right)^2+ \left(10.2\right)^2\)
\(= 2^2.(1^2 + 2^2 + 3^2 + ...+ 9^2 + 10^2) \)
\(= 4. 385\)
\(= 1540\)
\(2.\)
\( 2A = 2^1 + 2^2 + 2^3 + 2^4 +...+\)\(2^{2011}\)
\(2A - A = ( 2^1 + 2^2 + 2^3+ 2^4 +...+ 2^{2011} ) - ( 1 + 2^2 + 2^3 +...+ 2^{2010} ) \)
\(\Rightarrow A = 2^{2011} - 1\)
Bài 1:
A = 1 + 3 + 32 + ... + 3100
=> 3A = 3 + 32 + ... + 3101
=> 2A = 3101 - 1
=> A = \(\frac{3^{101}-1}{2}\)
B = 1 + 42 + 44 + ... + 4100
=> 8B = 42 + 44 + ... + 4102
=> 7B = 4102 - 1
=> B = \(\frac{4^{102}-1}{7}\)
Bài 2:
a) S1 = 22 + 42 + ... + 202
=> S1 = 22(1+22+...+102)
=> S1 = 22.385
=> S1 = 1540
b) S2 = 1002 + 2002 + ... + 10002
=> S2 = 1002(1+22+...+102)
=> S2 = 1002.385
=> S2 = 3850000
bằng 9539 bạn nhé
Nhớ **** đó