Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(10^28 +8) = 100...0+8
=1000..08
Vì 100..08 chia hết cho 4 và 9 mà 36 =4*9
do dó 100...08 chia hết cho 36 . Vậy (10^28 + 8) chia hết cho 36
(10^28 +8) = 100...0 +8
=1000..08
Vì 100..08 chia hết cho 4 và 9 mà 36 =4*9
do dó 100...08 chia hết cho 36 . Vậy (10^28 + 8) chia hết cho 36
k cho mk nha $_$
Sửa đề: \(10^{28}+8=\overline{1000...0000}+8\) (\(28\) chữ số \(0\))
\(=\overline{1000.....008}\) (27 chữ số 0)
Tổng chữ số: \(1+0+0+...+0+0+8=9⋮9\)
2 chữ số cuối: \(08⋮4\)
\(\Rightarrow10^{28}+8⋮36\)
Lời giải:
Ta thấy: $10^{28}+8=2^{28}.5^{28}+8=8(2^{25}.5^{28}+1)\vdots 4(1)$
$10^{28}+8\equiv 1^{28}+8\equiv 9\equiv 0\pmod 9$
$\Rightarrow 10^{28}+8\vdots 9(2)$
Từ $(1); (2)$ kết hợp với $(4,9)=1$ nên $10^{28}+8\vdots (4.9)$ hay $10^{28}+8\vdots 36$
Ta có:
1000 chia hết cho 8 => 10^3 chia hết cho 8
=>10^25.10^3 chia hết cho 8
và 8 chia hết cho 8
=>10^28+8 chia hết cho 8 (1)
Lại có 10^28+8= 1000....08(27 CS 0)
=>10^28+8 chia hết cho 9 (2)
Lại vì ƯCLN (8;9)=1 (3)
Từ (1);(2);(3)=>10^28+8 chia hết cho 72
k mk nha
*Chứng minh rằng (10^28+8) chia hết cho 4:
Ta có:10^28=10^2.10^26 mà 10^2 chia hết cho 4 nên 10^2.10^26 chia hết cho 4.(1)
8 chia hết cho 4.(2)
Từ (1) và (2) ta thấy(10^28+8) chia hết cho 4.(3)
*Chứng minh rằng (10^28+8) chia hết cho 9:
Ta có : 10^28=100..00(29 chữ số,28 chữ số 0)
10^28+8=1000..008(29 chữ số , 27 chữ số 0)
Tổng các chữ số của tổng đó là:
1+0.27+8=9 chia hết cho 9(4)
Vậy từ (3) và (4) ta có (10^28+8) chia hết cho 36.
4. x + 16 chia hết cho x + 1
Ta có
x + 16 = ( x + 1 ) + 15
Mà x + 1 chia hết cho 1
=> 15 phải chia hết cho x + 1
=> x + 1 thuộc Ư(15)
Ư(15) = { 1 ; 15 ; 3 ; 5 }
TH1 : x + 1 = 1 => x = 1 - 1 = 0
TH2 : x + 1 = 15 => x = 15 - 1 = 14
TH3 : x + 1 = 3 => x = 3 - 1 = 2
TH4 : x + 1 = 5 => x = 5 - 1 = 4
Vậy x = 0 ; 14 ; 4 ; 2
1
a . Để A chia hết cho 9 thì các số hạng của nó phải chia hết cho 9
Mà 963 , 2439 , 361 chia hết cho 9
=> x cũng phải chia hết cho 9
Vậy điều kiện để A chia hết cho 9 là x chia hết cho 9
Và ngược lại để A ko chia hết cho 9 thì x không chia hết cho 9
b. Tương tự phần trên nha
Bài 4:
a chia 11 dư 5 dạng tổng quát của a là:
\(a=11k+5\left(k\in N\right)\)
b chia 11 dư 6 dạng tổng quát của b là:
\(b=11k+6\left(k\in N\right)\)
Nên: \(a+b\)
\(=11k+5+11k+6\)
\(=\left(11k+11k\right)+\left(5+6\right)\)
\(=k\cdot\left(11+11\right)+11\)
\(=22k+11\)
\(=11\cdot\left(2k+1\right)\)
Mà: \(11\cdot\left(2k+1\right)\) ⋮ 11
\(\Rightarrow a+b\) ⋮ 11
Bài 1: Mình làm rồi nhé !
Bài 2:
a) Dạng tổng quát của A là:
\(a=36k+24\left(k\in N\right)\)
b) a chia hết cho 6 vì:
Ta có: \(36k\) ⋮ 6 và 24 ⋮ 6
\(\Rightarrow a=36k+24\) ⋮ 6
c) a không chia hết cho 9 vì:
Ta có: \(36k\) ⋮ 9 và 24 không chia hết cho 9
\(\Rightarrow a=36k+24\) không chia hết cho 9
Lời giải:
Để $10^{28}$ chia hết cho 36 thì nó phải chia hết cho 4 và 9.
$10^{28}\not\vdots 9$ do $10,9$ là 2 số nguyên tố cùng nhau.
$\Rightarrow 10^{28}$ không chia hết cho $36$.