\(x\) sao cho \(\left(x-3\right)\left(x+4\right)>...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)

2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)

3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)

4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)

23 tháng 7 2019

\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)

Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)

Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)

4 tháng 11 2016

\(\orbr{\begin{cases}x>3\\x< -4\end{cases}}\)Thiếu chỗ khai căn ra là :

Giá trị tuyệt đối của ​​\(x+\frac{1}{2}\)\(>3,5\)

TH1 Khi \(x>0\)thì

\(x+\frac{1}{2}>3,5\Leftrightarrow x>3\)

TH2 Khi \(x< 0\)thì

\(-\left(x+\frac{1}{2}\right)>3,5\)

\(\Leftrightarrow-x-\frac{1}{2}>3,5\Leftrightarrow-x>4\)

\(\Leftrightarrow x< -4\)

Đó như vậy có hai cái nha :

\(\orbr{\begin{cases}x>3\\x< -4\end{cases}}\)

4 tháng 11 2016

\(\left(x-3\right)\left(x+4\right)>0\)

\(\Leftrightarrow x^2+x-12>0\)

\(\Leftrightarrow x^2+2.\frac{1}{2}x+\frac{1}{4}-12,35>0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2-12,35>0\)

Bất đẳng thức lớn hơn 0 khi và chỉ khi 

\(\left(x+\frac{1}{2}\right)^2>12,35\)

Khai căn hai vế ra tức là căn hai vế ý 

\(x+\frac{1}{2}>3,5\)

\(\Leftrightarrow x>3\)

31 tháng 8 2017

Ta có : \(\frac{x+1}{x-4}>0\) 

Thì sảy ra 2 trường hợp 

Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4 

Vậy x > 4 

Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4 

Vậy x < (-1) . 

31 tháng 8 2017

Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)

Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)

Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)

9 tháng 6 2017

a) \(x=\pm2,1\)

b) \(x=-\dfrac{3}{4}\)

c) \(\)Không tồn tại x

d)\(x=0,35\)

28 tháng 7 2017

a, \(\left|x\right|=2,1\)

=> \(x=\pm2,1\)

b, \(\left|x\right|=\dfrac{3}{4},x< 0\)

=> \(x=\dfrac{3}{4}\)

c, \(\left|x\right|=-1\dfrac{2}{5}\)

=> Không tồn tại x.

d, \(\left|x\right|=0,35,x>0\)

=> \(x=0,35\)

a: 1-2x<7

=>-2x<6

hay x>-3

b: (x-1)(x-2)>0

=>x-2>0 hoặc x-1<0

=>x>2 hoặc x<1

c: \(\left(x-2\right)^2\cdot\left(x+1\right)\left(x-4\right)< 0\)

=>(x+1)(x-4)<0

=>-1<x<4

20 tháng 10 2019

a) Ta có : (2x - 1)100 + (x - y)102 = 0

<=> \(\hept{\begin{cases}2x-1=0\\x-y=0\end{cases}}\)

<=> \(\hept{\begin{cases}2x=1\\x=y\end{cases}}\)

<=> \(x=y=\frac{1}{2}\)

b) Ta có: |x - 3| + (x + y)2020 = 0

<=> \(\hept{\begin{cases}x-3=0\\x+y=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=3\\y=-x\end{cases}}\)

<=> \(\hept{\begin{cases}x=3\\y=-3\end{cases}}\)

Với x = 3 và y = -3 thay vào biểu thức A :

A = \(3^2.\left[3+\left(-3\right)\right]^{100}=9.0^{100}=0\)

20 tháng 10 2019

a) Ta có (2x - 1)100 \(\ge\)0 với mọi x

              (x - y)102  \(\ge\)0 với mọi x,y

Do đó : (2x - 1)100 + (x - y)102 \(\ge\)0 với mọi x,y

Và (2x-1)100 + (x-y)102 = 0

<=> 2x - 1 = 0          <=> x = 1/2

và   x - y   = 0             và y = 1/2

b) Ta có : |x - 3| \(\ge\)0 với mọi x

           (x + y)2020\(\ge\)0 với mọi x,y

Do đó : |x - 3| + (x + y)2020 \(\ge\)0 với mọi x,y

Và |x - 3| + (x + y)2020 = 0

<=> x - 3 = 0                      <=> x = 3

   và x + y = 0                     và    y = -3

Rồi tự thay vào r tính A đi eiu :)

20 tháng 9 2018

a, \(\left(x-3\right)\left(x+2\right)>0\)

th1 : \(\hept{\begin{cases}x-3>0\\x+2>0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>-2\end{cases}\Rightarrow}x>3}\)

th2 : \(\hept{\begin{cases}x-3< 0\\x+2< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< -3\end{cases}\Rightarrow}x< -3}\)

vậy x > 3 hoặc x < -3

b, \(\left(x+5\right)\left(x+1\right)< 0\)

th1 : \(\hept{\begin{cases}x+5>0\\x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-5\\x< -1\end{cases}\Rightarrow x\in\left\{-4;-3;-2\right\}}}\)

th2 : \(\hept{\begin{cases}x+5< 0\\x+1>0\end{cases}\Rightarrow\hept{\begin{cases}x< -5\\x>-1\end{cases}\Rightarrow}x\in\varnothing}\)

vậy x = -4; -3; -2

c, \(\frac{x-4}{x+6}\le0\)

xét \(\frac{x-4}{x+6}=0\)

\(\Rightarrow x-4=0;x\ne-6\)

\(\Rightarrow x=4\ne-6\)

xét \(\frac{x-4}{x+5}< 0\)

th1 : \(\hept{\begin{cases}x-4< 0\\x+5>0\end{cases}\Rightarrow\hept{\begin{cases}x< 4\\x>-5\end{cases}\Rightarrow}x\in\left\{3;2;1;0;-1;-2;-3;-4\right\}}\)

th2 : \(\hept{\begin{cases}x-4>0\\x+5< 0\end{cases}\Rightarrow\hept{\begin{cases}x>4\\x< -5\end{cases}\Rightarrow x\in\varnothing}}\)

d tương tự c

20 tháng 9 2018

\(\frac{\left(x-6\right)}{x-7}\ge0\)

Th1: x - 6 < 0

<=> x - 6 + 6 < 0 + 6

<=> x - 6 + 6 > 0 + 6

=> x < 6

Th2: x - 7

<=> x - 7 + 7 < 0 + 7

<=> x - 7 + 7 > 0 + 7

=> x > 7

=> x < 6 hoặc x > 7

24 tháng 12 2018

a) \(\left(x+1\right)\left(x-2\right)< 0\) khi 2 thừa số trái dấu

TH1: \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Leftrightarrow}-1< x< 2\left(chon\right)}\)

TH2: \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}\Leftrightarrow}2< x< -1\left(loai\right)}\)

Vậy \(-1< x< 2\)( tự tìm x )

24 tháng 12 2018

b) \(\left(x-1\right)\left(x+3\right)>0\)khi 2 thừa số cùng dấu

TH1: \(\hept{\begin{cases}x-1>0\\x+3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x>-3\end{cases}\Leftrightarrow}x>1}\)

TH2: \(\hept{\begin{cases}x-1< 0\\x+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< -3\end{cases}\Leftrightarrow}x< -3}\)

Vậy hoặc x > 1 hoặc x < -3 thì thỏa mãn