Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có:\(10A=\dfrac{10^{16}+10}{10^{16}+1}=\dfrac{10^{16}+1+9}{10^{16}+1}=\dfrac{10^{16}+1}{10^{16}+1}+\dfrac{9}{10^{16}+1}=1+\dfrac{9}{10^{16}+1}\)
\(10B=\dfrac{10^{17}+10}{10^{17}+1}=\dfrac{10^{17}+1+9}{10^{17}+1}=\dfrac{10^{17}+1}{10^{17}+1}+\dfrac{9}{10^{17}+1}=1+\dfrac{9}{10^{17}+1}\)
\(1+\dfrac{9}{10^{16}+1}>1+\dfrac{9}{10^{17}+1}\Rightarrow A>B\)
Vậy \(A>B\)
Ta có: \(A=\frac{10^{18}+1}{10^{19}+1}>\frac{10.\left(10^{17}+1\right)}{10.\left(10^{18}+1\right)}=\frac{10^{17}+1}{10^{18}+1}\)
Vậy A < B
1/ so sánh
a) 812 và 128
Ta có: \(8^{12}=\left(8^3\right)^4=512^4\\ 12^8=\left(12^2\right)^4=144^4\)
vì 5124>1444 nên 812>128
b) (0,4)60và (-0,8)30
Gọi A= (0,4)60 và B= (-0,8)30
\(\Rightarrow\frac{A}{B}=\frac{\left(0,4\right)^{60}}{\left(-0,8\right)^{30}}=\frac{\left(0,1.2^2\right)^{60}}{\left(0,1.2^3\right)^{30}}=\frac{0,1^{60}.2^{120}}{0,1^{30}.2^{90}}=0,1^{30}.2^{30}=0,2^{30}>1\\ \Rightarrow A< B\)
e)\(A=\frac{20^{15}+1}{20^{16}+1}vàB=\frac{20^{16}+1}{20^{17}+1}\\ 20.A=20.\frac{20^{15}+1}{20^{16}+1}=\frac{20^{16}+20}{20^{16}+1}=\frac{20^{16}+1+19}{20^{16}+1}=\frac{20^{16}+1}{20^{16}+1}+\frac{19}{20^{16}+1}=1+\frac{19}{20^{16}+1}\left(1\right)\)
\(20.B=20.\frac{20^{16}+1}{20^{17}+1}=\frac{20^{17}+20}{20^{17}+1}=\frac{20^{17}+1+19}{20^{17}+1}=\frac{20^{17}+1}{20^{17}+1}+\frac{19}{20^{17}+1}=1+\frac{19}{20^{17}+1}\left(2\right)\)
Từ (1) và (2) ⇒ A>B
Vì \(\frac{10^{18}+1}{10^{19}+1}< 1\Rightarrow B=\frac{10^{18}+1}{10^{19}+1}< \frac{10^{18}+1+9}{10^{19}+1+9}\)
\(\Rightarrow B< \frac{10^{18}+10}{10^{19}+10}\)
\(\Rightarrow B< \frac{10\left(10^{17}+1\right)}{10\left(10^{18}+1\right)}\)
\(\Rightarrow B< \frac{10^{17}+1}{10^{18}+1}\)
\(\Rightarrow B< A\)
Vậy A > B.
a)
\(\left(\dfrac{1}{12}\right)^{27}\) và \(\left(\dfrac{1}{12}\right)^{18}\)
Ta có:
\(\left(\dfrac{1}{12}\right)^{27}\)=\(\left(\left(\dfrac{1}{12}\right)^3\right)^9=\left(\dfrac{1}{18}\right)^9\)(1)
\(\left(\dfrac{1}{12}\right)^{18}\)\(=\left(\left(\dfrac{1}{12}\right)^3\right)^6=\left(\dfrac{1}{8}\right)^6\)(2)
Từ (1) và (2) ta có:
\(\left(\dfrac{1}{18}\right)^9>\left(\dfrac{1}{8}\right)^6\)
Vậy \(\left(\dfrac{1}{12}\right)^{27}\)>\(\left(\dfrac{1}{12}\right)^{18}\)
b)
\(\left(10\right)^{20}\) và \(\left(-9\right)^{10}\)
Ta có:
\(10^{20}=\left(\left(10\right)^4\right)^5\) (1)
\(\left(-9\right)^{10}=\left(\left(-9\right)^2\right)^5\) (2)
Từ (1) và (2), ta có:
\(\left(10000\right)^5>\left(81\right)^5\)
Vậy \(\left(10\right)^{20}\)> \(\left(-9\right)^{10}\)
c)
\(64^3\) và \(16^2\)
Ta có:
\(64^3=\left(\left(4^{ }\right)^3\right)^3\)(1)
\(16^2=\left(\left(4\right)^2\right)^2\)(2)
Từ (1) và (2), ta có:
\(\left(\left(4\right)^3\right)^3>\left(\left(4\right)^2\right)^2\)
Vậy \(64^3\)> \(16^2\)
d)
\(\left(-16\right)^3\) và \(\left(-64\right)^2\)
Ta có:
\(\left(-16\right)^3=\left(\left(-4\right)^2\right)^3\)(1)
\(\left(-64\right)^2=\left(\left(-4\right)^3\right)^2=\left(\left(-4\right)^2\right)^3\) (2)
Từ (1) và (2), ta có:
\(16^3=16^3\)
Vậy \(\left(-16\right)^3\)= \(\left(-64\right)^2\)
Chúc bạn học tốt!
chỗ câu a) mình nhầm nha bạn,1/12 mình nhầm mất (1/12)^3=1/1728. Bạn sửa lại sẽ dễ hiểu hơn :))
Bạn sửa hộ mình nhé, cảm ơn!
\(B=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{98}+\left(\dfrac{1}{2}\right)^{99}\)
\(\Rightarrow2B=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{97}+\left(\dfrac{1}{2}\right)^{98}\)
\(\Rightarrow2B-B=1-\left(\dfrac{1}{2}\right)^{99}\)
\(B=1-\left(\dfrac{1}{2}\right)^{99}\)
\(2,\)
\(a,\dfrac{45^{10}.2^{10}}{75^{15}}\)
\(=\dfrac{5^{10}.9^{10}.2^{10}}{25^{15}.3^{15}}\)
\(=\dfrac{5^{10}.3^{20}.2^{10}}{5^{30}.3^{15}}\)
\(=\dfrac{5^{10}.3^{15}.\left(3^5.2^{10}\right)}{5^{10}.3^{15}.\left(5^{20}\right)}\)
\(=\dfrac{3^5.2^{10}}{5^{20}}\)
\(b,\dfrac{2^{15}.9^4}{6^3.8^3}\)
\(=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)
\(c,\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{4^{10}.2^{10}+4^{10}}{4^4.2^4+4^4.4^7}=\dfrac{4^4.\left(4^6.2^{10}+4^6\right)}{4^4.\left(2^4+4^7\right)}\)
\(=\dfrac{4^{11}+4^6}{4^8.4^7}=\dfrac{4^6.\left(4^5+1\right)}{4^6.\left(4^2-4\right)}=\dfrac{1024+1}{16-4}=\dfrac{1025}{12}\)
\(d,\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)
\(3,\)
\(a,\left(2x+4\right)^2=\dfrac{1}{4}\)
\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2=\left(\dfrac{-1}{2}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x+4=\dfrac{1}{2}\\2x+4=\dfrac{-1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{2}-4=\dfrac{-7}{2}\\2x=\dfrac{-1}{2}-4=\dfrac{-9}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-7}{4}\\x=\dfrac{-9}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{-7}{4};\dfrac{-9}{4}\right\}\)
\(b,\left(2x-3\right)^2=36\)
\(\left(2x-3\right)^2=6^2=\left(-6\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=6+3=9\\2x=-6+3=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{9}{2};\dfrac{-3}{2}\right\}\)
\(c,5^{x+2}=628\)
\(5^{x+2}=5^4\)
\(\Rightarrow x+2=4\)
\(\Rightarrow x=4-2=2\)
Vậy \(x=2\)
\(d,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
\(\Rightarrow\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\)
\(\Rightarrow\left(x-1\right)^{x+2}.\left[\left(x-1\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^2-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x-1=1\\x-1=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
Vậy \(x\in\left\{0;1;2\right\}\)
Bài 1:
B= \(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{99}\)
2B= \(2.[\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}]\)
2B= \(1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{98}\)
⇒2B-B= \(1-\left(\dfrac{1}{2}\right)^{99}\)
B= 1
Vậy B=1
Bài 2:
a, \(\dfrac{45^{10}.2^{10}}{75^{15}}\)= \(\dfrac{\left(3^2.5\right)^{10}.2^{10}}{\left(3.5^2\right)^{15}}=\dfrac{3^{20}.5^{10}.2^{10}}{3^{15}.5^{30}}=\dfrac{3^5.2^{10}}{5^{20}}\)
b, \(\dfrac{2^{15}.9^4}{6^3.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)
c,\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2.4\right)^{10}+4^{10}}{\left(2.4\right)^4+4^{11}}=\dfrac{2^{10}.4^{10}+4^{10}}{2^4.4^4+4^{11}}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6+4^6.4^5}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(4^5+1\right)}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(2^{10}+1\right)}=4^4=256\)
d, \(\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{\left(3^4\right)^{11}.3^{17}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)
Bài 3:
a, \(\left(2x+4\right)^2=\dfrac{1}{4}\)
\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2\)
\(2x+4=\dfrac{1}{2}\)
\(2x=\dfrac{1}{2}-4\)
\(2x=-\dfrac{7}{2}\)
\(x=-\dfrac{7}{2}:2\)
\(x=-\dfrac{7}{2}.\dfrac{1}{2}\)
\(x=-\dfrac{7}{4}\)
b, \(\left(2x-3\right)^2=36\)
\(\left(2x-3\right)^2=6^2\)
\(2x-3=6\)
\(2x=9\)
\(x=\dfrac{9}{2}\)
c, \(5^{x+2}=625\)
\(5^{x+2}=5^4\)
\(x+2=4\)
\(x=2\)
B>A vi 1016 >1015 ; còn 1/1016 > 1/1017 không đáng kể