Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5\sqrt{x-2}=10+\sqrt{9x-18}\)
ĐK : x ≥ 2
<=> \(5\sqrt{x-2}=10+\sqrt{3^2\left(x-2\right)}\)
<=> \(5\sqrt{x-2}=10+3\sqrt{x-2}\)
<=> \(5\sqrt{x-2}-3\sqrt{x-2}=10\)
<=> \(2\sqrt{x-2}=10\)
<=> \(\sqrt{x-2}=5\)
<=> \(x-2=25\)
<=> \(x=27\left(tm\right)\)
Vậy S = { 27 }
b) \(\sqrt{\left(2x-1\right)^2}=5\)
<=> \(\left|2x-1\right|=5\)
<=> \(\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
a. ĐKXĐ: \(x\ge-\frac{10}{3}\)
Điều kiện có nghiệm : \(x^2+9x+20\ge0\Leftrightarrow\orbr{\begin{cases}x\ge-4\\x\le-5\end{cases}}\)
Kết hợp ta có điều kiện \(x\ge-\frac{10}{3}.\)
Từ phương trình ta có: \(x^2+9x+18=2\left(\sqrt{3x+10}-1\right)\)
\(\Leftrightarrow\left(x+3\right)\left(x+6\right)=2.\frac{3x+9}{\sqrt{3x+10}+1}\)
\(\Leftrightarrow\left(x+3\right)\left(x+6\right)=\frac{6\left(x+3\right)}{\sqrt{3x+10}+1}\)
\(\Leftrightarrow\left(x+3\right)\left(x+6-\frac{6}{\sqrt{3x+10}+1}\right)=0\)
TH1: x = - 3 (tm)
Th2: \(x+6-\frac{6}{\sqrt{3x+10}+1}=0\)
\(\Leftrightarrow\left(x+6\right)\sqrt{3x+10}+x+6-6=0\)
\(\Leftrightarrow\left(x+6\right)\sqrt{3x+10}+x=0\)
Đặt \(\sqrt{3x+10}=t\Rightarrow x=\frac{t^2-10}{3}\)
Vậy thì \(\left(\frac{t^2-10}{3}+6\right)t+\frac{t^2-10}{3}=0\)
\(\Leftrightarrow\frac{t^3+8t}{3}+\frac{t^2-10}{3}=0\Leftrightarrow t^3+t^2+8t-10=0\Leftrightarrow t=1\Leftrightarrow x=-3\left(tm\right).\)
Vậy pt có 1 nghiệm duy nhất x = - 3.
b. Nhân 2 vào hai vế của phương trình thứ nhất rồi trừ từng vế cho phương trình thứ hai, ta được:
\(2x^2y^2-4x+2y^2-\left(2x^2-4x+y^3+3\right)=0\)
\(\Leftrightarrow2x^2y^2-2x^2-y^3+2y^2-3=0\)
\(\Leftrightarrow2x^2\left(y^2-1\right)-\left(y+1\right)\left(y^2-3y+3\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(2x^2y-2x^2-y^2+3y-3\right)=0\)
Với y = - 1 ta có \(x^2-2x+1=0\Leftrightarrow x=1.\)
Với \(\left(2x^2+3\right)y-\left(2x^2+3\right)-y^2=0\Leftrightarrow\left(2x^2+3\right)\left(y-1\right)=y^2\)
\(\Rightarrow\frac{y^2}{y-1}-4x=-y^3\Rightarrow x=\frac{y^4-y^3+y^2}{4\left(y-1\right)}\)
Thế vào pt (1) : Vô nghiệm.
Vậy (x; y) = (1; -1)
a)
DK: x\(\ge\)-2,x\(\ge\)\(\dfrac{1}{2}\)
=>\(\sqrt{4\left(x+2\right)}-\sqrt{2x-1}+\sqrt{9\left(x+2\right)}=0\)
\(\Leftrightarrow2\sqrt{x+2}-\sqrt{2x-1}+3\sqrt{x+2}=0\)
\(\Leftrightarrow5\sqrt{x+2}-\sqrt{2x-1}=0\)
\(\Leftrightarrow5\sqrt{x+2}=\sqrt{2x-1}\)
<=>25x+50=2x-1
=>23x=-51
=>x=\(-\dfrac{51}{23}\)(ko thỏa mãn dk)
=> phương trình vô nghiệm..
b)
ĐKXĐ:\(x\ge1,x\ge-1\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x-1\right)}-3\sqrt{x-1}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x+1}-3\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{x+1}-3=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)(nhận)
Vậy S={1;8}
c) ĐKXĐ:
\(x\ge0\)
\(\Leftrightarrow6-9\sqrt{2x}-2\sqrt{2x}+6x=6x-5\)
\(\Leftrightarrow-11\sqrt{2x}=-11\)
\(\Leftrightarrow\sqrt{2x}=1\)
\(\Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\)
Câu a :\(\sqrt{4x+8}-2\sqrt{2x-1}+\sqrt{9x+18}=0\) ( ĐK : \(x\ge\dfrac{1}{2}\) )
\(\Leftrightarrow\sqrt{4x+8}+\sqrt{9x+18}=\sqrt{2x-1}\)
\(\Leftrightarrow2\sqrt{x+2}+3\sqrt{x+2}=\sqrt{2x-1}\)
\(\Leftrightarrow5\sqrt{x+2}=\sqrt{2x-1}\)
\(\Leftrightarrow25\left(x+2\right)=2x-1\)
\(\Leftrightarrow25x+50=2x-1\)
\(\Leftrightarrow23x=-51\)
\(\Leftrightarrow x=-\dfrac{51}{23}< -\dfrac{1}{2}\)
Vậy phương trình vô nghiệm .
Câu b :
\(\sqrt{x^2-1}-\sqrt{9\left(x-1\right)}=0\) ( ĐK : \(x\ge1\) )
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x+1\right)}-3\sqrt{\left(x-1\right)}=0\)
\(\Leftrightarrow\sqrt{\left(x-1\right)}\left(\sqrt{x+1}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{x+1}-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)
Vậy \(S=\left\{1;8\right\}\)
Câu c : \(\left(3-\sqrt{2x}\right)\left(2-3\sqrt{2x}\right)=6x-5\) ( ĐK : \(x\ge\dfrac{5}{6}\) )
\(\Leftrightarrow6-9\sqrt{2x}-2\sqrt{2x}+6x=6x-5\)
\(\Leftrightarrow-11\sqrt{2x}+11=0\)
\(\Leftrightarrow-11\left(\sqrt{2x}-1\right)=0\)
\(\Leftrightarrow\sqrt{2x}-1=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\left(TMĐK\right)\)
Vậy \(S=\left\{\dfrac{1}{2}\right\}\)
Chúc bạn học tốt
a/ \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐKXĐ : \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow2\sqrt{x-1}=2\Leftrightarrow x-1=1\Leftrightarrow x=2\)
b/ \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)
\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}+3=0\)
<=> 3 = 0 (vô lý)
=> pt vô nghiệm.
c/ \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) (ĐKXĐ : x>-5/7)
\(\Leftrightarrow9x-7=7x+5\Leftrightarrow2x=12\Leftrightarrow x=6\)
d/ \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\) (ĐKXĐ : \(x\ge\frac{3}{2}\))
\(\Leftrightarrow2x-3=4\left(x-1\Leftrightarrow\right)2x=1\Leftrightarrow x=\frac{1}{2}\) (loại)
Vậy pt vô nghiệm.
giải phương trình
a) \(\sqrt{x+2}-\sqrt{4x+8}+\frac{3}{4}\sqrt{9x+18}=3\)
b) \(\sqrt{x^2-4x+4}=2x-3\)
a) đk: \(x\ge-2\)
Ta có: \(\sqrt{x+2}-\sqrt{4x+8}+\frac{3}{4}\sqrt{9x+18}=3\)
\(\Leftrightarrow\sqrt{x+2}-2\sqrt{x+2}+\frac{9}{4}\sqrt{x+2}=3\)
\(\Leftrightarrow\frac{5}{4}\sqrt{x+2}=3\)
\(\Leftrightarrow\sqrt{x+2}=\frac{12}{5}\)
\(\Leftrightarrow x+2=\frac{144}{25}\)
\(\Rightarrow x=\frac{94}{25}\) (tm)
b) đk: \(x\ge\frac{3}{2}\)
Ta có: \(\sqrt{x^2-4x+4}=2x-3\)
\(\Leftrightarrow\left|x-2\right|=2x-3\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=2x-3\\x-2=3-2x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=\frac{5}{3}\left(tm\right)\end{cases}}\)
a) \(\sqrt{x+2}-\sqrt{4x+8}+\frac{3}{4}\sqrt{9x+18}=3\)
ĐKXĐ : x ≥ -2
⇔ \(\sqrt{x+2}-\sqrt{2^2\left(x+2\right)}+\frac{3}{4}\sqrt{3^2\left(x+2\right)}=3\)
⇔ \(\sqrt{x+2}-2\sqrt{x+2}+\frac{3}{4}\cdot3\sqrt{x+2}=3\)
⇔ \(-\sqrt{x+2}+\frac{9}{4}\sqrt{x+2}=3\)
⇔ \(\frac{5}{4}\sqrt{x+2}=3\)
⇔ \(\sqrt{x+2}=\frac{12}{5}\)
⇔ \(x+2=\frac{144}{25}\)
⇔ \(x=\frac{94}{25}\left(tmđk\right)\)
b) \(\sqrt{x^2-4x+4}=2x-3\)
⇔ \(\sqrt{\left(x-2\right)^2}=2x-3\)
⇔ \(\left|x-2\right|=2x-3\)(1)
Với x < 2
(1) ⇔ -( x - 2 ) = 2x - 3
⇔ 2 - x = 2x - 3
⇔ -x - 2x = -3 - 2
⇔ -3x = -5
⇔ x = 5/3 ( tm )
Với x ≥ 2
(1) ⇔ x - 2 = 2x - 3
⇔ x - 2x = -3 + 2
⇔ -x = -1
⇔ x = 1 ( ktm )
Vậy x = 5/3
Đăng 1 lúc mà nhiều thế. Lần sau đăng 1 câu thôi b.
b/ \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)
Ta có: \(VT\ge1+2+\sqrt{5}=3+\sqrt{5}\)
Dấu = xảy ra khi \(x=2\)
c/ \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=\sqrt{3-\left(x-1\right)^2}+\sqrt{1-\left(x+3\right)^2}\)
\(\le1+\sqrt{3}\)
Dấu = không xảy ra nên pt vô nghiệm
Câu d làm tương tự
\(a,\sqrt{x^2-4}-x^2+4=0\)
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow x^2-4=\left(x-4\right)^2\)
\(\Leftrightarrow x^2-4-x^4+8x^2-16=0\)
\(\Leftrightarrow-x^4-7x^2-20=0\)
\(\Leftrightarrow-\left(x^4+7x^2+\frac{49}{4}\right)-\frac{31}{4}=0\)
\(\Leftrightarrow-\left(x^2+\frac{7}{2}\right)^2=\frac{31}{4}\)
\(\Leftrightarrow\left(x^2+\frac{7}{2}\right)=-\frac{31}{4}\)
\(\Rightarrow\)pt vô nghiệm
a.
\(DK:49-28x-4x^2\ge0\)
PT\(\Leftrightarrow\sqrt{49-28x-4x^2}=5\)
\(\Leftrightarrow49-28x-4x^2=25\)
\(\Leftrightarrow4x^2+28x-24=0\)
\(\Leftrightarrow x^2+7x-6=0\)
Ta co:
\(\Delta=7^2-4.1.\left(-6\right)=73>0\)
\(\Rightarrow\hept{\begin{cases}x_1=\frac{-7+\sqrt{73}}{2}\left(n\right)\\x_2=\frac{-7-\sqrt{73}}{2}\left(n\right)\end{cases}}\)
Vay nghiem cua PT la \(\hept{\begin{cases}x_1=\frac{-7+\sqrt{73}}{2}\\x_2=\frac{-7-\sqrt{73}}{2}\end{cases}}\)
ĐK: \(x\ge\frac{3}{2}\)
\(\sqrt{2x-3}+3=x\)
<=> \(\sqrt{2x-3}=x-3\) (đk: \(x\ge3\))
=> \(2x-3=\left(x-3\right)^2\)
<=> \(2x-3=x^2-6x+9\)
<=> \(x^2-8x+12=0\) <=> \(\left(x-6\right)\left(x-2\right)=0\)
=> \(\orbr{\begin{cases}x=6\left(TMĐK\right)\\x=2\left(KTMĐK\right)\end{cases}}\)
Hai câu sau tương tự nhé bn
\(x\sqrt{12}+\sqrt{18}=x\sqrt{8}+\sqrt{27}\)
<=> \(2x\sqrt{3}+3\sqrt{2}=2x\sqrt{2}+3\sqrt{3}\)
<=> \(2x\sqrt{3}-2x\sqrt{2}=3\sqrt{3}-3\sqrt{2}\)
<=> \(2x\left(\sqrt{3}-\sqrt{2}\right)=3\left(\sqrt{3}-\sqrt{2}\right)\)
<=> \(2x=3=>x=\frac{3}{2}\)
\(\sqrt{x^2-2x+2}=x-2\)
\(\Leftrightarrow\sqrt{\left(x^2-2x+2\right)^2}=\left(x-2\right)^2\)
\(\Leftrightarrow x^2-2x+2=x^2-4x+4\)
\(\Leftrightarrow x^2-x^2-2x+4x=4-2\)
\(\Leftrightarrow2x=2\)
\(\Leftrightarrow x=1\)