Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(x-\frac{20}{11.13}-\frac{20}{13.15}-...-\frac{20}{53.55}=\frac{3}{11}\)
\(x-\left(\frac{20}{11.13}+\frac{20}{13.15}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)
\(x-\frac{20}{2}.\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10.\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10\cdot\frac{4}{55}=\frac{3}{11}\)
\(x-\frac{8}{11}=\frac{3}{11}\)
\(x=1\)
b) \(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)
\(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)
\(\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)
\(2.\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{9}\)
\(2.\left(\frac{1}{6}-\frac{1}{x+1}\right)=\frac{2}{9}\)
\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{x+1}=\frac{1}{18}\)
=> x + 1 =18
x = 17
bài 2 ko bk lm, xl nha
a, -1/24 - [1/4 - (1/2 - 7/8)]
= -1/24 - [1/4 - 1/2 + 7/8]
= -1/24 - 1/4 + 1/2 - 7/8
= -1/24 - 6/24 + 12/14 - 21/24
= -16/24 = -2/3
Yêu cầu tính hả ?
a ) \(\frac{-1}{24}-\left[\frac{1}{4}-\left(\frac{1}{2}-\frac{7}{8}\right)\right]\)
\(=\frac{-1}{24}-\left[\frac{1}{4}-\left(-\frac{3}{8}\right)\right]\)
\(=\frac{-1}{24}-\left[\frac{1}{4}+\frac{3}{8}\right]\)
\(=\frac{-1}{24}-\frac{5}{8}\)
\(=\frac{-2}{3}\)
b ) \(\left[\frac{5}{7}-\frac{7}{5}\right]-\left[\frac{1}{2}-\left(-\frac{2}{7}-\frac{1}{10}\right)\right]\)
\(=\left[\frac{5}{7}-\frac{7}{5}\right]-\left[\frac{1}{2}-\left(-\frac{27}{10}\right)\right]\)
\(=\left[\frac{5}{7}-\frac{7}{5}\right]-\left[\frac{1}{2}+\frac{27}{10}\right]\)
\(=\frac{-24}{35}-\frac{16}{5}\)
\(=\frac{-136}{35}\)
\(1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{10}}\)
\(=1-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)(1)
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\)
\(\Rightarrow2A=1+\frac{1}{2}+...+\frac{1}{2^9}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(\Rightarrow A=1-\frac{1}{2^{10}}\)
Thay A vào (1)
\(\Rightarrow1-\left(1-\frac{1}{2^{10}}\right)\)
\(=1-1+\frac{1}{2^{10}}=\frac{1}{2^{10}}\)
Ta có: 210 < 211
\(\Rightarrow\frac{1}{2^{10}}>\frac{1}{2^{11}}\)(đpcm)
1.a) Sửa lại đề: \(\frac{11}{17}\)ở mẫu chuyển thành \(\frac{11}{7}\)
\(\frac{0,75+0,6-\frac{3}{7}-\frac{3}{13}}{2,75+2,2-\frac{11}{7}-\frac{11}{13}}=\frac{\frac{3}{4}+\frac{3}{5}-\frac{3}{7}-\frac{3}{13}}{\frac{11}{4}+\frac{11}{5}-\frac{11}{7}-\frac{11}{13}}\)\(=\frac{3\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{7}-\frac{1}{13}\right)}{11\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{7}-\frac{1}{13}\right)}=\frac{3}{11}\)
( vì \(\frac{1}{4}+\frac{1}{5}-\frac{1}{7}-\frac{1}{13}\ne0\))
2.a) \(\frac{3}{5}+\frac{3}{2}.x=\frac{-5}{7}\)\(\Leftrightarrow\frac{3}{2}.x=\frac{-5}{7}-\frac{3}{5}\)
\(\Leftrightarrow\frac{3}{2}.x=\frac{-46}{35}\)\(\Leftrightarrow x=\frac{-46}{35}:\frac{3}{2}\)\(\Leftrightarrow x=\frac{-92}{105}\)
Vậy \(x=\frac{-92}{105}\)
b) \(\left(4x-\frac{1}{3}\right).\left(\frac{3}{2}x+\frac{5}{6}\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}4x-\frac{1}{3}=0\\\frac{3}{2}x+\frac{5}{6}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x=\frac{1}{3}\\\frac{3}{2}x=\frac{-5}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-5}{9}\end{cases}}\)
Vậy \(x=\frac{-5}{9}\)hoặc \(x=\frac{1}{12}\)
e, \(\frac{3}{14}:\frac{1}{28}-\frac{13}{21}:\frac{1}{28}+\frac{28}{42}:\frac{1}{28}-8\)
\(=\left(\frac{3}{14}-\frac{13}{21}+\frac{2}{3}\right):\frac{1}{28}-8\)
\(=\frac{11}{42}:\frac{1}{28}-8\)
\(=\frac{22}{3}-8\)
\(=-\frac{2}{3}\)
e, \(\frac{3}{14}:\frac{1}{28}-\frac{13}{21}:\frac{1}{28}+\frac{28}{42}:\frac{1}{28}-8\)
\(=\left(\frac{3}{14}-\frac{13}{21}+\frac{2}{3}\right):\frac{1}{28}-8\)
\(=\frac{11}{42}:\frac{1}{28}-8\)
\(=\frac{22}{3}-8\)
\(=-\frac{2}{3}\)
a,(=)\(3^{x+1}.\left(3+4\right)=7.3^6\)
(=)\(3^{x+1}=3^6\)
=>x+1=6(=)x=5
b