Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Đặt \(\frac{x}{10}=\frac{y}{6}=k\)
\(\Rightarrow x=10k,y=6k\)
Mà \(xy=60\)
\(\Rightarrow10k6k=60\)
\(\Rightarrow60k^2=60\)
\(\Rightarrow k^2=1\)
\(\Rightarrow k=\pm1\)
+) \(k=1\Rightarrow x=10;y=6\)
+) \(k=-1\Rightarrow x=-10;y=-6\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(10;6\right);\left(-10;-6\right)\)
b) Hình như đề sai !!!
c) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
+) \(\frac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow x=\pm6\)
+) \(\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow y=\pm8\)
( x, y cùng dấu )
Vậy cặp số ( x; y ) là ( 6; 8 ) ; ( -6; -8 )
+) \(\left(x-3\right)^2=16\)
\(\Rightarrow\orbr{\begin{cases}\left(x-3\right)^2=4^2\\\left(x-3\right)^2=\left(-4\right)^2\end{cases}\Rightarrow}\orbr{\begin{cases}x-3=4\\x-3=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=-1\end{cases}}\)
Vậy x = 7 hoặc x = -1
+) \(\left(1-3x\right)^3=-64\)
\(\Rightarrow\left(1-3x\right)^3=\left(-4\right)^3\)
\(\Rightarrow1-3x=-4\)
\(\Rightarrow3x=1+4\)
\(\Rightarrow3x=5\)
\(\Rightarrow x=5:3\)
\(\Rightarrow x=\frac{5}{3}\)
Vậy \(x=\frac{5}{3}\)
+) \(x^{13}=27.x^{10}\)
\(\Rightarrow x^{13}:x^{10}=27\)
\(\Rightarrow x^3=27\)
\(\Rightarrow x^3=3^3\)
\(\Rightarrow x=3\)
Vậy x = 3
+) \(\left(4x-1\right)^2=\left(1-4x\right)^4\)
\(\Rightarrow\left(4x-1\right)^2=\left(4x-1\right)^4\)
\(\Rightarrow\left(4x-1\right)^2-\left(4x-1\right)^4=0\)
\(\Rightarrow\left(4x-1\right)^2\left[1-\left(4x-1\right)^2\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(4x-1\right)^2=0\\1-\left(4x-1\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}\left(4x-1\right)^2=0\\\left(4x-1\right)^2=1\end{cases}}\)
TH 1 : \(\left(4x-1\right)^2=0\Rightarrow4x-1=0\Rightarrow4x=1\Rightarrow x=\frac{1}{4}\)
TH 2 : \(\left(4x-1\right)^2=1\Rightarrow\orbr{\begin{cases}4x-1=1\\4x-1=-1\end{cases}}\Rightarrow\orbr{\begin{cases}4x=2\\4x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=0\end{cases}}\)
Vậy \(x\in\left\{\frac{1}{4};\frac{1}{2};0\right\}\)
_Chúc bạn học tốt_
a, (x-3)^2 = 16
=> (x-3)^2=4^2
=> x-3=4
=> x= 4+3
=> x = 7 .Vậy x =7
b,(1-3x)^3 = 64
=> ( 1-3x)^3 = 4^3
=> 1-3x = 4
=> 3x = 1-4
=> 3x = -3
=> x = -1 . Vậy x = -1
c, x^13 = 27.x^10
=> x^13 : x^10 = 27
=> x^3 = 3^3
=> x = 3 . Vậy x = 3
a. (x-1/2)2=0
=> x-1/2=0
=> x=1/2
b. (x-2)2=1
=> (x-2)2=12=(-1)2
=> x-2=1 hoặc x-2=-1
=> x=3 hoặc x=1
c. (2x-10)3=-8
=> (2x-10)3=(-2)3
=> 2x-10=-2
=> 2x=-2+10
=> 2x=8
=> x=8:2
=> x=4
d. (x+1/2)2=1/16
=> (x+1/2)2=(1/4)2=(-1/4)2
=> x+1/2=1/4 hoặc x+1/2=-1/4
=> x=1/4-1/2 hoặc x=-1/4-1/2
=> x=-1/4 hoặc x=-3/4
(x - 1/2)2 = 0
=> x - 1/2 = 0
x = 1/2
...............Tương tự
2) x4 -16 =0 => x4 =16 => x4 = 44 hoặc (-4)4 => x = 4 hoặc -4
Bài 1:
a)
\(\dfrac{4^2\cdot25^2+32\cdot125}{2^3\cdot5^2}\\ =\dfrac{\left(2^2\right)^2\cdot\left(5^2\right)^2+2^5\cdot5^3}{2^3\cdot5^2}\\ =\dfrac{2^{2\cdot2}\cdot5^{2\cdot2}+2^5\cdot5^3}{2^3\cdot5^2}\\ =\dfrac{2^4\cdot5^4+2^5\cdot5^3}{2^3\cdot5^2}\\ =\dfrac{2^4\cdot5^4}{2^3\cdot5^2}+\dfrac{2^5\cdot5^3}{2^3\cdot5^2}\\ =2\cdot5^2+2^2\cdot5\\ =2\cdot25+4\cdot5\\ =50+20\\ =70\)
c)
\(\dfrac{\left(1-\dfrac{4}{9}-2\right)\cdot16}{\left(2-3\right)^{-2}}+12\\ =\dfrac{\left(\dfrac{9}{9}-\dfrac{4}{9}-\dfrac{18}{9}\right)\cdot16}{\left(-1\right)^{-2}}+12\\ =\dfrac{\dfrac{-13}{9}\cdot16}{\dfrac{1}{\left(-1\right)^2}}+12\\ =\dfrac{\dfrac{-208}{9}}{1}+12\\ =\dfrac{-208}{9}+12\\ =\dfrac{-208}{9}+\dfrac{108}{9}\\ =\dfrac{100}{9}\)
Bài 2:
a)
\(\left(x+2\right)^2=36\\ \Rightarrow\left[{}\begin{matrix}x+2=6\\x+2=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)
b)
\(\left(1,78^{2x-2}-1,78^x\right):1,78^x=0\\ \Leftrightarrow\dfrac{1,78^{2x-2}}{1,78^x}-\dfrac{1,78^x}{1,78^x}=0\\ \Leftrightarrow\dfrac{1,78^{2x-2}}{1,78^x}-1=0\\ \Leftrightarrow \dfrac{1,78^{2x-2}}{1,78^x}=1\\ \Leftrightarrow1,78^{2x-2}=1,78^x\\ \Leftrightarrow2x-2=x\\ \Leftrightarrow2x-x=2\\ \Leftrightarrow x=2\)
d) \(5^{\left(x-2\right)\left(x+3\right)}=1\)
\(\Rightarrow5^{\left(x-2\right)\left(x+3\right)}=5^0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy \(x_1=-3;x_2=2\)
1.a) \(\left(\frac{3}{5}\right)^{15}:\left(\frac{9}{25}\right)^5=\frac{3^{15}}{5^{15}}.\frac{5^{10}}{3^{10}}=\frac{3^5}{5^5}=\left(\frac{3}{5}\right)^5\)
b)\(\left(\frac{2}{3}\right)^{10}:\left(\frac{4}{9}\right)^4=\frac{2^{10}}{3^{10}}.\frac{3^8}{2^8}=\frac{2^2}{3^2}=\left(\frac{2}{3}\right)^2\)
2.
a)\(2^x=4\Rightarrow2^x=2^2\Rightarrow x=2\)
b)\(x^3=-27\Rightarrow x^3=-3^3\Rightarrow x=-3\)
c)\(x^2=16\Rightarrow x=\pm4\)
d)\(\left(x+1\right)^2=9\Rightarrow\hept{\begin{cases}x+1=3\Rightarrow x=2\\x+1=-3\Rightarrow x=-4\end{cases}}\)