Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{4}x-\frac{2}{3}.\left(\frac{3}{5}x-\frac{6}{5}\right)=\frac{1}{7}-\frac{2}{9}x\)
\(\frac{3}{4}x-\frac{2}{5}x+\frac{4}{5}=\frac{1}{7}-\frac{2}{9}x\)
\(\left(\frac{3}{4}-\frac{2}{5}\right)x+\frac{4}{5}=\frac{1}{7}-\frac{2}{9}x\)
\(\left(\frac{15}{20}-\frac{8}{20}\right)x+\frac{4}{5}=\frac{1}{7}-\frac{2}{9}x\)
\(\frac{7}{20}x+\frac{4}{5}=\frac{1}{7}-\frac{2}{9}x\)
\(\frac{1}{7}-\frac{4}{5}=\frac{2}{9}x-\frac{7}{20}x\)
\(\frac{5}{35}-\frac{28}{35}=\left(\frac{2}{9}-\frac{7}{20}\right)x\)
\(\frac{-23}{35}=\left(\frac{40}{180}-\frac{63}{180}\right)x\)
\(\frac{-23}{180}x=\frac{-23}{35}\)
\(x=\frac{-23}{35}:\frac{-23}{180}\)
\(x=\frac{-23}{35}.\frac{180}{-23}\)
\(x=\frac{180}{35}\)
Vậy \(x=\frac{180}{35}\)
Chúc bạn học tốt
Thay x = -1/3 vào biểu thức A,ta có :
\(\left(-\frac{1}{3}\right)^3-5.\left(-\frac{1}{3}\right)^2+10\)
\(=\left(-\frac{1}{27}\right)-5.\frac{1}{9}+10\)
\(=\left(-\frac{1}{27}\right)-\frac{5}{9}+10\)
\(-\frac{16}{27}+10=\frac{286}{27}\)
Vậy ...
a, \(\left|x-3,5\right|+\left|x-\frac{1}{3}\right|=0\)
\(\hept{\begin{cases}x-3,5\ge0\forall x\\x-\frac{1}{3}\ge0\forall x\end{cases}\Rightarrow\left|x-3,5\right|+\left|x-\frac{1}{3}\right|\ge0\forall x}\)
Dấu ''='' xảy ra <=> \(x-3,5=0\Leftrightarrow x=3,5\)
\(x-\frac{1}{3}=0\Leftrightarrow x=\frac{1}{3}\)
b, \(\left|x\right|+x=\frac{1}{3}\Leftrightarrow\left|x\right|=\frac{1}{3}-x\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}-x\\x=-\frac{1}{3}+x\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{1}{3}\\0\ne-\frac{1}{3}\end{cases}\Leftrightarrow}x=\frac{1}{6}}\)
c, \(\left|x-2\right|=x\Leftrightarrow\orbr{\begin{cases}x-2=x\\x-2=-x\end{cases}\Leftrightarrow\orbr{\begin{cases}-2\ne0\\x=1\end{cases}}}\)
d, tương tự c
Sửa ý a) của bạn @akirafake
a) \(\left|x-3,5\right|+\left|x-1,3\right|=0\)
Ta có : \(\left|x-3,5\right|+\left|x-1,3\right|=\left|-\left(x-3,5\right)\right|+\left|x-1,3\right|=\left|3,5-x\right|+\left|x-1,3\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :
\(\left|3,5-x\right|+\left|x-1,5\right|\ge\left|3,5-x+x-1,5\right|=\left|2\right|=2\)
mà \(\left|x-3,5\right|+\left|x-1,3\right|=0\)( vô lí )
Vậy không có giá trị của x thỏa mãn
b) \(\left|x\right|+x=\frac{1}{3}\)
=> \(\left|x\right|=\frac{1}{3}-x\)
=> \(\orbr{\begin{cases}x=\frac{1}{3}-x\\x=x-\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}2x=\frac{1}{3}\\0x=-\frac{1}{3}\end{cases}\Rightarrow}2x=\frac{1}{3}\Rightarrow x=\frac{1}{6}\)
c) \(\left|x\right|-x=\frac{3}{4}\)
=> \(\left|x\right|=\frac{3}{4}+x\)
=> \(\orbr{\begin{cases}x=\frac{3}{4}+x\\x=-x-\frac{3}{4}\end{cases}\Rightarrow}\orbr{\begin{cases}0x=\frac{3}{4}\\2x=-\frac{3}{4}\end{cases}}\Rightarrow2x=-\frac{3}{4}\Rightarrow x=-\frac{3}{8}\)
d) \(\left|x-2\right|=x\)
=> \(\orbr{\begin{cases}x-2=x\\x-2=-x\end{cases}}\Rightarrow\orbr{\begin{cases}0x=2\\2x=2\end{cases}}\Rightarrow2x=2\Rightarrow x=1\)
e) \(\left|x+2\right|=x\)
=> \(\orbr{\begin{cases}x+2=x\\x+2=-x\end{cases}}\Rightarrow\orbr{\begin{cases}0x=-2\\2x=-2\end{cases}}\Rightarrow2x=-2\Rightarrow x=-1\)
Thế x = -1 ta được :
\(\left|-1+2\right|=-1\)( vô lí )
=> Không có giá trị của x thỏa mãn
a) \(\frac{4}{9}x+\frac{2}{5}-\frac{1}{3}x=\frac{2}{9}-\frac{1}{4}x\)
\(\Leftrightarrow\frac{13}{36}x=-\frac{8}{45}\)
\(\Rightarrow x=-\frac{32}{65}\)
b) \(\left(\frac{2}{3}x-\frac{1}{2}\right).\left(-\frac{2}{3}\right)+\frac{1}{5}=-\frac{3}{4}\)
\(\Leftrightarrow-\frac{4}{9}x+\frac{1}{3}+\frac{1}{5}=-\frac{3}{4}\)
\(\Leftrightarrow\frac{4}{9}x=\frac{77}{60}\)
\(\Rightarrow x=\frac{231}{80}\)
a) \(\frac{4}{9}x+\frac{2}{5}-\frac{1}{3}x=\frac{2}{9}-\frac{1}{4}x\)
=> \(\frac{4}{9}x-\frac{1}{3}x+\frac{2}{5}-\frac{2}{9}+\frac{1}{4}x=0\)
=> \(\left(\frac{4}{9}x-\frac{1}{3}x+\frac{1}{4}x\right)+\left(\frac{2}{5}-\frac{2}{9}\right)=0\)
=> \(\frac{13}{36}x+\frac{8}{45}=0\)
=> \(\frac{13}{36}x=-\frac{8}{45}\)
=> \(x=-\frac{32}{65}\)
b) \(\left(\frac{2}{3}x-\frac{1}{2}\right)\cdot\frac{-2}{3}+\frac{1}{5}=\frac{-3}{4}\)
=> \(\left(\frac{2}{3}x-\frac{1}{2}\right)\cdot\frac{-2}{3}=-\frac{19}{20}\)
=> \(\frac{2}{3}x-\frac{1}{2}=\left(-\frac{19}{20}\right):\left(-\frac{2}{3}\right)=\left(-\frac{19}{20}\right)\cdot\left(-\frac{3}{2}\right)=\frac{57}{40}\)
=> \(\frac{2}{3}x=\frac{57}{40}+\frac{1}{2}=\frac{77}{40}\)
=> \(x=\frac{77}{40}:\frac{2}{3}=\frac{77}{40}\cdot\frac{3}{2}=\frac{231}{80}\)
Bài giải
b, \(x-5+\left|x-3\right|=4\)
\(\left|x-3\right|=4-x+5\)
\(\Rightarrow\orbr{\begin{cases}x-3=-4+x-5\\x-3=4-x+5\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x-x=-4-5+3\\x+x=4+5+3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x\ne-6\text{ ( loại ) }\\2x=12\end{cases}}\)\(\Rightarrow\text{ }x=6\)
c, \(\sqrt{\left(x+7\right)^2}+\left(x^2-49\right)^{2012}=0\)
\(\left(x+7\right)+\left(x^2-49\right)^{2012}=0\)
\(\Rightarrow\hept{\begin{cases}x+7=0\\\left(x^2-49\right)^{2012}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x^2-49=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x^2=49\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x=\pm7\end{cases}}\)
\(\)\(\Rightarrow\text{ }x=-7\)
d, \(2\left|3-x\right|^{2017}+\left(y-x+1\right)^{2016}\le0\)
\(\text{Vì }\hept{\begin{cases}2\left|3-x\right|^{2017}\ge0\\\left(y-x+1\right)^{2016}\ge0\end{cases}}\) \(\Rightarrow\text{ Chỉ xảy ra trường hợp }2\left|3-x\right|^{2017}+\left(y-x+1\right)^{2016}=0\)
\(\Rightarrow\hept{\begin{cases}2\left|3-x\right|^{2017}=0\\\left(y-x+1\right)^{2016}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left|3-x\right|^{2017}=0\\y-x+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3-x=0\\y-x+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y-3+1=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\y-2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)
Ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)
\(\Rightarrow\frac{x^2}{4}=\frac{3y^2}{27}=\frac{z^2}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{3y^2}{27}=\frac{z^2}{25}=\frac{x^2+3y^2-z^2}{4+27-25}=\frac{30}{6}=5\)
\(\Rightarrow\)x2=20
y2=45
z2=125
Áp dụng .......................................
ta được: x/2=y/3=z/5=(x2+3y2-z2)/(22+3*32-52)=30/6=5
Vậy: x=10
y=15
z=25
*\(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)
\(M=6x^2+9xy-y^2-\left(5x^2-2xy\right)\)
\(M=6x^2+9xy-y^2-5x^2+2xy\)
\(M=\left(6-5\right)x^2+\left(9+2\right)xy-y^2\)
\(M=x^2+11xy-y^2\)
* \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\)
Ta có : \(\hept{\begin{cases}\left(2x-5\right)^{2018}\ge0\forall x\\\left(3y+4\right)^{2020}\ge0\forall y\end{cases}\Rightarrow}\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\ge0\forall x,y\)
Mà đề cho \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\)
=> \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}=0\)
=> \(\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}\)
Thay x = 5/2 ; y = -4/3 vào M ta được :
\(M=\left(\frac{5}{2}\right)^2+11\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)-\left(-\frac{4}{3}\right)^2\)
\(M=\frac{25}{4}+\frac{-110}{3}-\frac{16}{9}\)
\(M=\frac{-1159}{36}\)
Vậy giá trị của M = -1159/36 khi x = 5/2 ; y = -4/3
Không chắc nha
\(a,5x^3-3x^2+x-x^3-4x^2-x\)
\(=4x^3-7x^2\)
\(b,y^2+2y-2y^2-3y+3\)
\(=-y^2-y+3\)
\(c,\frac{1}{2}x^3-2x^2-4x-\frac{1}{2}x^3-x+1\)
\(=\frac{1}{6}x^3-2x^2-5x+1\)
\(d,\frac{3}{4}xy^2-\frac{1}{2}y^2-\left(-\frac{1}{4}xy^2\right)+\frac{2}{3}y^2\)
\(=xy^2+\frac{1}{6}y^2\)
\(e,2xy-2yz.z+xy+\frac{1}{2}z^2y+2zy\cdot y\)
\(=3xy-\frac{3}{2}z^2y+2zy^2\)
\(g,3^n+3^{n+2}\)
\(=3^n+3^n.3^2\)
\(=3^n\cdot10\)
\(h,1,5\cdot2^n-2^{n-1}\)
\(=1,5\cdot2^n-2^n\cdot\frac{1}{2}\)
\(=2^n\cdot1\)
\(=2^n\)
\(i,2^n-2^n-2\)
\(=-2\)
\(k,\frac{2}{3}\cdot3^n-3^{n-1}\)
\(=\frac{2}{3}\cdot3^n-3^n\cdot\frac{1}{3}\)
\(=3^n\cdot\frac{1}{3}\)
\(=\frac{3^n}{3}\)
sẵn bán nick luôn :)
Cái này hơi lâu thật,nhưng kiên trì 1 chút là đc ngay thôi bn !
a, \(5x^3-3x+x-x^3-4x^2-x=4x^3-3x-4x^2\)
b, \(y^2+2y-2y^2-3y+3=-y^2-y+3\)
c, \(\frac{1}{2}x^3-2x^2-4x-\frac{1}{2}x^3-x+1=-2x^2-5x+1\)
d, \(\frac{3}{4}xy^2-\frac{1}{2}y^2-\left(-\frac{1}{4}xy^2\right)+\frac{2}{3}y^2=\frac{3}{4}xy^2-\frac{1}{2}y^2+\frac{1}{4}xy^2+\frac{2}{3}y^2=xy^2+\frac{1}{6}y^2\)
e, \(2xy-2yz.z+xy+\frac{1}{2}z^2y+2zy.y=2xy-2yz^2+xy+\frac{1}{2}z^2y+2zy^2=3xy-\frac{3}{2}z^2y+2zy^2\)
g, \(3^n+3^{n+2}\)( chắc tối giản rồi,ko phân tích đc nữa. )
h, \(1,5.2^n-2^{n-1}\)( chắc tối giản rồi,ko phân tích đc nữa. )
i, \(2^n-2^n-2=-2\)
k, \(\frac{2}{3}.3^n-3^{n-1}\)( chắc tối giản rồi,ko phân tích đc nữa. )
Có j sai,mong mọi người góp ý,thông cảm ạ.
x3+9x=0
<=> x(x2+9)=0
<=> x= hoặc x2=-9
<=> x=0
Vậy x=0
X^3+9x=0
=>x(x^2-9)=0
=>x(x-3)(x+3)=0
=>x=0
Hoặc x-3=0 =>x=-3
Hoặc x+3=0 =>x=3
Vậy x=0,x=3;x=-3