K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2018

\(\text{a) }\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)

Đặt \(x^2+1=y\)

\(\Leftrightarrow y^2+3xy+2x^2=0\\ \Leftrightarrow y^2+2xy+xy+2x^2=0\\ \Leftrightarrow\left(y^2+2xy\right)+\left(xy+2x^2\right)=0\\ \Leftrightarrow y\left(y+2x\right)+x\left(y+2x\right)=0\\ \Leftrightarrow\left(y+x\right)\left(y+2x\right)=0\\ \Leftrightarrow\left(x^2+1+x\right)\left(x^2+1+2x\right)=0\\ \Leftrightarrow\left(x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\right)\left(x+1\right)^2=0\\ \Leftrightarrow\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\left(x+1\right)^2=0\\ \Leftrightarrow\left(x+1\right)^2=0\left(\text{Vì }\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ne0\right)\\ \Leftrightarrow x+1=0\\ \Leftrightarrow x=-1\)

Vậy tập nghiệm phương trình là \(S=\left\{-1\right\}\)

\(\text{b) }\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2=0\)

Đặt \(x^2-1=y\)

\(\Leftrightarrow y^2-xy-2x^2=0\\ \Leftrightarrow y^2-2xy+xy-2x^2=0\\ \\ \Leftrightarrow\left(y^2-2xy\right)+\left(xy-2x^2\right)=0\\ \Leftrightarrow y\left(y-2x\right)+x\left(y-2x\right)=0\\ \Leftrightarrow\left(y+x\right)\left(y-2x\right)=0\\ \Leftrightarrow\left(x^2-1+x\right)\left(x^2-1-2x\right)=0\\ \Leftrightarrow\left(x^2+x+\dfrac{1}{4}-\dfrac{5}{4}\right)\left[\left(x^2-2x+1\right)-2\right]=0\\ \Leftrightarrow\left[\left(x+\dfrac{1}{2}\right)^2-\dfrac{5}{4}\right]\left[\left(x-1\right)^2-2\right]=0\\ \Leftrightarrow\left(x+\dfrac{1}{2}-\dfrac{\sqrt{5}}{2}\right)\left(x+\dfrac{1}{2}+\dfrac{\sqrt{5}}{4}\right)\left(x-1-\sqrt{2}\right)\left(x-1+\sqrt{2}\right)=0\\ \Leftrightarrow\left(x+\dfrac{1-\sqrt{5}}{2}\right)\left(x+\dfrac{1+\sqrt{5}}{2}\right)\left(x-1-\sqrt{2}\right)\left(x-1+\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1-\sqrt{5}}{2}=0\\x+\dfrac{1+\sqrt{5}}{2}=0\\x-1-\sqrt{2}=0\\x-1+\sqrt{2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1-\sqrt{5}}{2}\\x=-\dfrac{1+\sqrt{5}}{2}\\x=1+\sqrt{2}\\x=-1-\sqrt{2}\end{matrix}\right.\)

Vậy tập nghiệm phương trình là \(S=\left\{-\dfrac{1-\sqrt{5}}{2};-\dfrac{1+\sqrt{5}}{2};1+\sqrt{2};-1-\sqrt{2}\right\}\)

3 tháng 10 2016

de qua

6 tháng 8 2018

x.(2.x-1)+1/3-2/3.x=0

3 tháng 9 2016

trời đất, học hằng đẳng thức chưa, chưa hc thì thôi, học rồi thì áp dụng vs bài này như ăn cháo thôi chứ có j đâu phải hỏi

13 tháng 7 2018

Mình giải từ cuối lên , mình giải dần -)

n,  <=> x(2x-1)-3(2x-1)=0

<=> (x-3)(2x-1)=0

<=> x= 3 hoặc x= 1/2

m, <=> (x+2)(x2-3x+5)-x2(x+2)=0

<=> (x+2)(x2-3x+5-x2)=0

<=> (x+2)(5-3x)=0

=> x= -2 hoặc5/3

13 tháng 7 2018

trả lời chi tiết giúp mình với

a) Ta có: \(\left(2x-4\right)\left(3x+1\right)+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)\left[2\left(3x+1\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(6x+2+x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\cdot7x=0\)

Vì 7≠0

nên \(\left[{}\begin{matrix}x-2=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

Vậy: x∈{0;2}

b) Ta có: \(\left(2x+1\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\cdot3x=0\)

Vì 3≠0

nên \(\left[{}\begin{matrix}x+2=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)

Vậy: x∈{0;-2}

c) Ta có: \(2x^2-x=0\)

\(\Leftrightarrow x\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{1}{2}\right\}\)

d) Ta có: \(x^3-6x^2+9x=0\)

\(\Leftrightarrow x\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow x\left(x-3\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy: x∈{0;3}

k) Ta có: \(x^3+3x^2+x+3=0\)
\(\Leftrightarrow x^2\left(x+3\right)+\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\)(1)

Ta có: \(x^2+1\ge1>0\forall x\)(2)

Từ (1) và (2) suy ra x+3=0

hay x=-3

Vậy: x=-3

17 tháng 4 2023

cái bài a) thì số 2 đâu ra thế bạn?

<=>(x−2)[2(3x+1)+(x−2)]=0

12 tháng 10 2020

a) 2x (x-5) -(x2-10x +25)=0

\(\Leftrightarrow\)2x(x-5)-(x-5)2=0

\(\Leftrightarrow\)(x-5)(2x-x+5)=0

\(\Leftrightarrow\)(x-5)(x+5)=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-5=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)

b) x2 - 9 +3x(x+3) = 0

\(\Leftrightarrow\)(x2 - 9) +3x(x+3) =0

\(\Leftrightarrow\)(x-3)(x+3)+3x(x+3)=0

\(\Leftrightarrow\)(x+3)(x-3+3x)=0

\(\Leftrightarrow\)(x+3)(4x-3)=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x+3=0\\4x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-3\\4x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\frac{3}{4}\end{matrix}\right.\)

c) x3 - 16x = 0

\(\Leftrightarrow\)x(x2-16)=0

\(\Leftrightarrow\)x(x-4)(x+4)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

d) (2x+3)(x-2) - (x2 -4x+4) = 0

\(\Leftrightarrow\)(2x+3)(x-2) -(x-2)2=0

\(\Leftrightarrow\)(x-2)(2x+3-x+2)=0

\(\Leftrightarrow\)(x-2)(x+5)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

e) 9x2 -(x2 -2x +1)=0

\(\Leftrightarrow\)(3x)2-(x-1)2=0

\(\Leftrightarrow\)(3x-x+1)(3x+x-1)=0

\(\Leftrightarrow\)(2x+1)(4x-1)=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x+1=0\\4x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x=-1\\4x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=\frac{1}{4}\end{matrix}\right.\)

f)x3-4x2 -9x +36 = 0

\(\Leftrightarrow\)(x3-9x)-(4x2-36)=0

\(\Leftrightarrow\)x(x2-9)-4(x2-9)=0

\(\Leftrightarrow\)(x-4)(x2-9)=0

\(\Leftrightarrow\)(x-4)(x-3)(x+3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\\x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=4\\x=3\\x=-3\end{matrix}\right.\)

g) 3x - 6 = (x-1).(x-2)

\(\Leftrightarrow\)3(x-2)=(x-1)(x-2)

\(\Leftrightarrow\)x-1=3

\(\Leftrightarrow\)x=4

i) (x-2).(x+2) +(2x+1)2 =-5x.(x-3) =5 (?? đề sao vậy ??)

k) x2 -1 = (x-1).(2x+3)

\(\Leftrightarrow\)(x-1)(x+1)=(x-1)(2x+3)

\(\Leftrightarrow\)x+1=2x+3

\(\Leftrightarrow\)x-2x=3-1

\(\Leftrightarrow\)-x=2

\(\Leftrightarrow\)x=-2

l) (2x-1)2 +(x+3).(x-3) -5x(x-2)=6

\(\Leftrightarrow\)4x2-4x+1+x2-9-5x2+10x=6

\(\Leftrightarrow\)6x-8=6

\(\Leftrightarrow\)6x=14

\(\Leftrightarrow\)x=\(\frac{7}{3}\)

\(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)

\(TH1:3x-2=0\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\)

\(TH2:x+6=0\Leftrightarrow x=-6\)

\(TH3:x^2+5=0\Leftrightarrow x^2=5\Leftrightarrow x=\sqrt{5}\)( ns vô nghiệm cx ko sai nha ) 

\(\left(2x+5\right)^2=\left(3x-1\right)^2\)

\(2x+5=3x-1\)

\(2x-3x=-1-5\)

\(-1x=-6\)

\(x=6\)

13 tháng 1 2017

1. Ta có \(x^3+3x^2+x+3=0\)

\(\Leftrightarrow\left(x^3+3x^2\right)+\left(x+3\right)=0\)

\(\Leftrightarrow x^2\left(x+3\right)+\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\)

Nếu x+3=0 =>x=-3

Nếu \(x^2+1=0\) =>x\(=\varnothing\) (vì \(x^2+1>0\))

Vậy x=-3

13 tháng 1 2017

2) đặt x^2+x+1 = t

=> x^2 +x +2 =t+1

pt => t(t+1)=2

t^2 + t -2 =0

\(\Rightarrow\left[\begin{matrix}t=1\\t=-2\end{matrix}\right.\)

voi t=1 => x^2 +x+1=1

=> \(\Rightarrow\left[\begin{matrix}x=-1\\x=0\end{matrix}\right.\)

voi t=-2 => x^2+x+1=-2

=> x^2+x+3=0(vo nghiem)

cau 3 lam nhu cau 2

4) pt <=> (x^2-4)(x+3-x+1)=0

ban tu giai not nha