\(|\)x+1\(|\) +
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3: Trường hợp 1: x<-3

Pt sẽ là -x-2-x-3=x

=>-2x-5=x

=>-3x=5

hay x=-5/3(loại)

Trường hợp 2: -3<=x<-2

Pt sẽ là -x-2+x+3=x

=>x=1(loại)

TRường hợp 3: x>=-2

Pt sẽ là x+2+x+3=x

=>2x+5=x

hay x=-5(loại)

26 tháng 12 2018

a

4 =22

5 =5.1

6=2.3

\(\Rightarrow BCNN\left(4,5,6\right)=2^2.3.5=60\)

BC (4,5,6 ) = B (60) ={0 ;60;120,240,360,420,......}

x-1 = {1 :61;121:241;361;421 ;.......}

mà x <400

=> x = 361

26 tháng 12 2018

8=23

16=24

24=23.3

=> BCNN(......) = 24.3=48

BC (.....) B(48)={0,48,96,144,192,240,288,......}

x+2={-2;46;94;142;190;238;286;.....}

\(x\le250\)

=> x = 238 

.......

5 tháng 5 2017

ta có tổng của hai số  nghich dao luon lon hoac bang 2

lấyS1+S2+S3=

̣̣b/a*x+c/a*z + a/b*x+c/b*y + a/c*z+b/c*y=x*[a/b+b/a]+y*[c/b+b/c]+z*[a/c+c/a] lớn hơn hoặc bằng 2*[x+y+z]=2*1008=2016

vậy S1+S2+S3 lớn hơn hoặc bằng 2016

9 tháng 4 2018

ta có tổng của hai số  nghich dao luon lon hoac bang 2

lấyS1+S2+S3=

̣̣b/a*x+c/a*z + a/b*x+c/b*y + a/c*z+b/c*y=x*[a/b+b/a]+y*[c/b+b/c]+z*[a/c+c/a] lớn hơn hoặc bằng 2*[x+y+z]=2*1008=2016

vậy S1+S2+S3 lớn hơn hoặc bằng 2016


 

17 tháng 1 2018

1< |x- 2| <4
\(\Rightarrow\)|x - 2|\(\in\) {2;3}

|0 - 2| = 2; |-1 - 2| = 3; |4 - 2| = 2; |5 - 2| = 3

\(\Rightarrow\)x\(\in\){-1;0;4;5}

17 tháng 1 2018

Vì 1<|x-2|<4 nên |x-2|=2;3.

=>x-2=2;-2;3;-3.

=>x=4;0;5;-1

19 tháng 5 2015

\(\Rightarrow S_1+S_2+S_3=\left(\frac{b}{a}x+\frac{c}{a}z\right)+\left(\frac{a}{b}x+\frac{c}{b}y\right)+\left(\frac{a}{c}z+\frac{b}{c}y\right)\)

                                     \(=\left(\frac{b}{a}x+\frac{a}{b}x\right)+\left(\frac{c}{b}y+\frac{b}{c}y\right)+\left(\frac{c}{a}z+\frac{a}{c}z\right)\)

                                     \(=x\left(\frac{b}{a}+\frac{a}{b}\right)+y\left(\frac{c}{b}+\frac{b}{c}\right)+z\left(\frac{c}{a}+\frac{a}{c}\right)\)

Ta có: Tổng hai số nghịch đảo luôn lớn hơn hoặc bằng 2 nên:

\(\frac{b}{a}+\frac{a}{b}\ge2\)   ;   \(\frac{c}{b}+\frac{b}{c}\ge2\)   ;     \(\frac{c}{a}+\frac{a}{c}\ge2\)

\(\Rightarrow S_1+S_2+S_3\ge x.2+y.2+z.2=2.\left(x+y+z\right)=2.5=10\)

   Vậy suy ra điều phải chứng minh.

18 tháng 7 2017

tại sao là 2.5 vậy

6 tháng 3 2017

\(\dfrac{3}{x}+\dfrac{y}{3}=\dfrac{5}{6}\Leftrightarrow\dfrac{9}{3x}+\dfrac{xy}{3x}=\dfrac{5}{6}\)

\(\Leftrightarrow\dfrac{xy+9}{3x}=\dfrac{5}{6}\Leftrightarrow6\left(xy+9\right)=5\cdot3x\)

\(\Leftrightarrow6xy+54=15x\)\(\Leftrightarrow6xy-15x=-54\)

\(\Leftrightarrow3x\left(2y-5\right)=-54\)

\(\Leftrightarrow x\left(2y-5\right)=-18\)

s1+s2+s3=b/a *x+c/a *z+a/b *x+c/b *y+a/c *z+b/c *y

=(b/a *x+a/b *x)+(c/b *y+b/c *y)+(a/c *z+c/a *z)

=(b/a+a/b)*x+(c/a+a/c)*z+(c/b+b/c)*y lớn hơn hoặc bằng 2*x+2*y+2*z=2*(x+y+z)=2*5=10

suy ra ĐPCM

1 tháng 5 2017

Ta có: \(S_1+S_2+S_3=\left(\frac{b}{a}x+\frac{c}{a}z\right)+\left(\frac{a}{b}x+\frac{c}{b}y\right)+\left(\frac{a}{c}z+\frac{b}{c}y\right)\)

\(=\frac{b}{a}x+\frac{c}{a}z+\frac{a}{b}x+\frac{c}{b}y+\frac{a}{c}z+\frac{b}{c}y\)

\(=\left(\frac{b}{a}x+\frac{a}{b}x\right)+\left(\frac{c}{b}y+\frac{b}{c}y\right)+\left(\frac{c}{a}z+\frac{a}{c}z\right)\)

\(=x\left(\frac{b}{a}+\frac{a}{b}\right)+y\left(\frac{c}{b}+\frac{b}{c}\right)+z\left(\frac{c}{a}+\frac{a}{c}\right)\)

Vì \(\frac{b}{a}+\frac{a}{b}\ge2;\frac{c}{b}+\frac{b}{c}\ge2;\frac{c}{a}+\frac{a}{c}\ge2\)

\(\Rightarrow S_1+S_2+S_3\ge2x+2y+2z=2\left(x+y+z\right)=2.5=10\)

Vậy S1 + S2 + S3 \(\ge\)10

1 tháng 5 2017

1.

S1+S2+S3\(x\left(\frac{b}{a}+\frac{a}{b}\right)+y\left(\frac{c}{b}+\frac{b}{c}\right)+z\left(\frac{c}{a}+\frac{a}{c}\right)\)            (1)
Xét \(\left(u-t\right)^2=\left(u-t\right)\left(u-t\right)=u^2+t^2-2ut\)
Vì \(\left(u-t\right)^2\ge0\Rightarrow u^2+t^2-2ut\ge0\Rightarrow u^2+t^2\ge2ut\)
Áp dụng vào biểu thức (1) có 
S1+S2+S3\(x\left(\frac{b}{a}+\frac{a}{b}\right)+y\left(\frac{c}{b}+\frac{b}{c}\right)+z\left(\frac{c}{a}+\frac{a}{c}\right)\)  \(\ge x\cdot2\sqrt{\frac{ab}{ba}}+y\cdot2\sqrt{\frac{bc}{cb}}+z\cdot2\sqrt{\frac{ac}{ca}}=2x+2y+2z=2\left(x+y+z\right)=2\cdot5=10\)
Vậy    S1+S2+S3\(\ge10\)(đpcm)
Dấu "=" xảy ra khi a=b=c (> 0)
2.

\(M=\frac{21x+3}{6x+4}=\frac{3\left(7x+1\right)}{2\left(3x+2\right)}\)
Để M rút gọn được thì ta có 4 trường hợp sau
*TH1: \(3⋮\left(3x+2\right)\)
\(\Rightarrow\left(3x+2\right)\inƯ\left(3\right)=\left\{1;3\right\}\)\(\Rightarrow x=\left\{-\frac{1}{3};\frac{1}{3}\right\}\left(loại\right)\)
*TH2: \(\left(7x+1\right)⋮2\Rightarrow\left(7x+1\right)\)là số tự nhiên chẵn 
Cho (7x+1) = 2k \(\left(k\in N\right)\) =>  \(x=\frac{2k-1}{7}\)
Vậy với x = \(\frac{2k-1}{7}\)và (2k-1) là B(7)  thì M có thể rút gọn được
*TH3: \(3\left(7x+1\right)⋮\left(3x+2\right)\Leftrightarrow21x+14-11⋮\left(3x+2\right)\Rightarrow\left(3x+2\right)\inƯ\left(11\right)=\left\{1;11\right\}\)
\(\Rightarrow x=\left\{-\frac{1}{3};3\right\}\)
Vậy x=3

*TH4  ( mẫu số lúc này chia hết cho tử, bạn tự khai triển ra sẽ có kết quả như TH3)
Kết luận : với khi x=3 hoặc x = \(\frac{2k-1}{7}\)và (2k-1) là B(7)  thì M có thể rút gọn được