Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{6x}{5x-20}-\dfrac{x}{x^2-8x+16}\)
\(ĐKXĐ:x\ne\pm4\)
\(\Leftrightarrow A=\dfrac{6x}{5\left(x-4\right)}-\dfrac{x}{\left(x-4\right)^2}\)
\(\Leftrightarrow A=\dfrac{6x^2-24x-5x}{5\left(x-4\right)^2}\)
\(\Leftrightarrow\dfrac{6x^2-29x}{5\left(x-4\right)^2}\)
\(\Leftrightarrow\dfrac{x\left(6x-29\right)}{5\left(x-4\right)^2}\)
a) Ta có: \(\left(6x+1\right)^2+\left(6x-1\right)^2-2\left(1+6x\right)\left(6x-1\right)\)
\(=\left(6x+1\right)^2-2\left(6x+1\right)\left(6x-1\right)+\left(6x-1\right)^2\)
\(=\left(6x+1-6x+1\right)^2=2^2=4\)
b) Ta có: \(x\left(2x^2-3\right)-x^2\left(5x+1\right)+x^2\)
\(=2x^3-3x-5x^3-x^2+x^2\)
\(=-3x-3x^3\)
c) Ta có: \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+24\)
\(=24-11x\)
d) Ta có: \(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
a,\(A=\left(x^4-3x^2+9\right)\left(x^2+3\right)+\left(3-x^2\right)^2\)
\(A=x^6-3x^4+9x^2+3x^4-9x^2+27+9-6x^2+x^4\)
\(A=x^6+x^4-6x^2+36\)
b, \(M=5\left(x+2y\right)^2-\left(3y+2x\right)^2+\left(4x-y\right)^2+3\left(x-2y\right)\left(x+2y\right)\)
\(M=5\left(x^2+4xy+4y^2\right)-\left(9y^2+12xy+4x^2\right)+\left(16x^2-8xy+y^2\right)+3\left(x^2-4y^2\right)\)
\(M=5x^2+20xy+20y^2-9y^2-12xy-4x^2+16x^2-8xy+y^2+3x^2-12y^2\)
\(M=20x^2\)
Các câu còn lại làm tương tự! Chúc bạn học tốt!!!
E=\(\left(6x+1\right)^2+\left(6x-1\right)^2-2\left(1+6x\right)\left(6x-1\right)\)
\(\Leftrightarrow\left(6x+1\right)^2-2\left(1+6x\right)\left(6x-1\right)+\left(6x-1\right)^2\)
\(\Leftrightarrow\left[\left(6x+1\right)-\left(6x-1\right)\right]^2\)
\(\Leftrightarrow\left(6x+1-6x+1\right)^2=2^2=4\)
a) \(\left(6x+1\right)^2+\left(6x-1\right)^2-2\left(1+6x\right)\left(6x-1\right)\)
\(=36x^2+12x+1+36x^2-12x+1-72x^2+2\)
\(=4\)
c) \(x\left(2x^2-3\right)-x^2\left(5x+1\right)+x^2\)
\(=2x^3-3x-5x^3-x^2+x^2\)
\(=-3x^3-3x\)
d) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+24\)
\(=-11x+24\)
a) (6x+1)2 + (6x-1)2 - 2(1+6x)(6x-1)
= (6x+1+6x-1)2
=144x2
b) x(2x2 -3) - x2(5x+1) +x2
=2x3 - 3x - 5x3 -x2+x2
=-3x3-3x
=-3x(x2+1)
c) 3(22+1)(24+1)(28+1)(216+1)
= (22-1)(22+1)(24+1)(28+1)(216+1)
= (24-1)(24+1)(28+1)(216+1)
= (28-1)(28+1)(216+1)
= (216-1)(216+1)
= 232 -1
d) 3x(x-2) - 5x(1-x) - 8(x2 -3)
= 3x2-6x - 5x + 5x2 - 8x2 +24
= -11x +24
\(1,\left(x-2\right)\left(x+2\right)\left(x^2+4\right)-\left(x^2-3\right)\left(x^2+3\right)\)
\(=\left(x^2-4\right)\left(x^2+4\right)-\left(x^2-9\right)\)
\(=x^2-16-x^2+9\)
\(=-7\)
\(2,\left(6x+1\right)^2+\left(6x-1\right)^2-2\left(1+6x\right)\left(6x-1\right)\)
\(=\left(6x+1-6x+1\right)^2\)
\(=2^2=4\)