Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Tự vẽ nhé!
b)Vì là TKHT nên:
-Khoảng cách của ảnh là:
\(\frac{1}{f}=\frac{1}{d}+\frac{1}{d^'}\Leftrightarrow\frac{1}{12}=\frac{1}{36}+\frac{1}{d^'}\)
\(\Leftrightarrow\frac{1}{d^'}=\frac{1}{12}-\frac{1}{36}=\frac{1}{18}\Leftrightarrow d^'=18\left(cm\right)\)
-Độ cao của ảnh là:
\(\frac{h}{h^'}=\frac{d}{d^'}\)
\(\Leftrightarrow\frac{1}{h'}=\frac{12}{18}\Leftrightarrow h'=18.1:12=1,5\left(cm\right)\)
xétΔOAB và ΔOA'B'
ABA′B′=OAOA′ABA′B′=OAOA′⇒ABA′B′=8OA′(1)ABA′B′=8OA′(1)
xétΔOFI và ΔF'A'B'
OIA′B′=12OF′+OA′OIA′B′=12OF′+OA′(2)
từ (1) và (2)⇒8OA′=1212+OA′8OA′=1212+OA′
⇔8.(12+OA')=12.OA'
⇔96+8.OA'=12.OA'
⇔8.OA'-12.OA'=96
⇔-4.OA'=96
⇔OA'=-24 cm
thay OA'=-24 vào (1)
1A′B′=8−241A′B′=8−24⇒A'B'=−13−13 cm
MÌNH THAM KHẢO NHÉ
a) Xét △ABO và △A′B′O có:
ABOˆ=A′B′Oˆ=900
BOAˆ=B′OA′ˆ (hai góc đối đỉnh)
⇒ Hai tam giác ABO và A'B'O là hai tam giác đồng dạng
⇒ \(\frac{A'B'}{AB}=\frac{B'O}{BO}\)
⇒ Độ phóng đại ảnh \(k=\frac{A'B'}{AB}=\frac{h'}{h}=\frac{d'}{d}\)
b) Tương tự: Hai tam giác A'B'F' và IOF' là hai tam giác đồng dạng
⇒\(\text{ }\frac{B'F'}{OF'}=\frac{A'B'}{IO}=\frac{d'}{d}\)
Áp dụng tính chất của tỉ lệ thức: \(\frac{B'F'+OF'}{OF'}=\frac{d'+d}{d}\)hay \(\frac{d'}{f}=\frac{d'+d}{d}\)
⇒\(\frac{1}{f}=\frac{1}{d}=\frac{1}{f'}\)
CÓ MẤY CÁI KÍ HIỆU GÓC, MÌNH KHÔNG BIẾT VIẾT, BẠN THÔNG CẢM
a) Xét \(\Delta ABO\) và \(\Delta A'B'O'\)
\(ABO=A'B'O=90^0\)
\(BOA=B'O'A\)( hai góc đối đỉnh )
\(\Rightarrow\)Hai tam giác ABO và A'B'O là hai tam giác đồng dạng
\(\Rightarrow\frac{A'B}{AB}=\frac{B'O}{BO}\)
\(\Rightarrow\)Độ phóng đại ảnh : \(k=\frac{A'B}{AB}=\frac{h'}{h}=\frac{d'}{d}\)
b) Tương tự : Hai tam giác A'B'F và IOF' là hai tam giác đồng dạng
\(\Rightarrow\frac{B'F'}{OF}=\frac{A'B}{TO}=\frac{d'}{d}\)
Dựa vào tính chất của tỉ lệ thức : \(\frac{B'F'+OF'}{OF'}=\frac{d'+d}{d}\)hay \(\frac{d'}{f}=\frac{d'+d}{d}\)
Khoảng cách ảnh AB tới thấu kính \(d_2\):
\(\dfrac{1}{f_2}=\dfrac{1}{d_2}+\dfrac{1}{d_2'}\Rightarrow d_2'=\dfrac{d_2\cdot f_2}{d_2-f_2}=\dfrac{9d_2}{d_2-9}\left(cm\right)\)
Di chuyển thấu kính lại gần màn ảnh 24 cm:
\(\Rightarrow d_2"=\dfrac{\left(d_2+24\right)\cdot f_2}{d_2+24-f_2}=\dfrac{9\left(d_2+24\right)}{d_2+15}\left(cm\right)\)
Khoảng cách giữa ảnh AB và O1 là:
\(d_2+\dfrac{9d_2}{d_2-9}=d_2+24+\dfrac{9\left(d_2+24\right)}{d_2+15}\)
\(\Rightarrow d_2^2+6d_2-216=0\Rightarrow\left[{}\begin{matrix}d_2=12cm\\d_2=-18cm\left(loại\right)\end{matrix}\right.\)
Ảnh AB cách thấu kính O1:
\(d_1'=60-12-36=12cm\)
Tiêu cự thấu kính O1:
\(\dfrac{1}{f_1}=\dfrac{1}{d_1}+\dfrac{1}{d_1'}=\dfrac{1}{12}+\dfrac{1}{12}=\dfrac{1}{6}\)
\(\Rightarrow f_1=6cm\)
Tịnh tiến AB trước thấu kính O để ảnh độ cao không phụ thuộc vào vị trí của vật.
Xảy ra\(\Leftrightarrow\)Tiêu điểm hai thấu kính trùng nhau.
\(\Leftrightarrow O_1O_2=f_1+f_2=6+9=15cm\)
a) vì là TKHT mà theo đề thì ta có d (tức là OA) < f ,=> ảnh ảo, cùng chiều và lớn hơn vật
b)Xét tam giác OAB đồng dạng vs ta, giác OA'B'
=> h/h' = d/d' (AB/A'B'=OA/OA')..........(1)
xét tam giac F'OI đồng dạng vs tgiac F'A'B'
=> h/h' = f/(f+d') (( OI/A'B' = FO/(FO+FA')))..........(2)
từ 1 và 2 => d/d' =f/(f+d')
chia 2 vế cho dd'f => 1/d =1/f + 1/d'
theo đề có d và f => d'=12
thế d'=12, d=6, h=1 vào (1)
=>h'=2
F' A O A' B' I
Dựng ảnh của vật sáng AB qua thấu kính hội tụ. Dùng hai trong ba tia sáng đã học để dựng ảnh B’ của điểm B.
+ Vật AB cách thấu kính d = 36 cm, vật ngoài khoảng OF.
Tia BI đi song song với trục chính nên cho tia ló đi qua F’
Tia tới BO là tia đi quang tâm O nên cho tia ló đi thẳng
Hai tia ló trên giao nhau tại B’, ta thu được ảnh thật B’ của B qua thấu kính.
Từ B’ hạ vuông góc với trục của thấu kính, cắt trục chính tại điểm A’. A’ là ảnh của điểm A. A’B’ là ảnh của AB tạo bởi thấu kính hội tụ.
Nhận xét: Ảnh A’B” là ảnh thật ngược chiều với vật khi vật được đặt ngoài khoảng tiêu cự ( Hình 43.4a)
+ Vật AB cách thấu kính d = 8 cm, vật nằm trong khoảng OF.
Tia BI đi song song với trục chính nên cho tia ló đi qua F’
Tia tới BO là tia đi quang tâm O nên cho tia ló đi thẳng
Hai tia ló trên có đường kéo dài giao nhau tại B’, ta thu được ảnh ảo B’ của B qua thấu kính.
Từ B’ hạ vuông góc với trục của thấu kính, cắt trục chính tại điểm A’. A’ là ảnh của điểm A. A’B’ là ảnh của AB tạo bởi thấu kính hội tụ.
Nhận xét: Ảnh ảo A’B’ cùng chiều với vật và lớn hơn vật khi vật được đặt trong khoảng tiêu cự (Hình 43.4b)
a. Thấu kính này là TLHT vì ảnh ngược chiều vs vật...cho ảnh thật,,...
b. hình tự vẽ...
f= OF = OF'= 4.8 cm
A B F F'
Giải:
\(\Delta OAB\) đồng dạng \(\Delta OA'B'\)\(\Rightarrow\frac{AB}{A'B'}=\frac{OA}{OA'}\left(1\right)\)
\(\Delta FOI\) đồng dạng \(\Delta F'A'B'\)
\(\Rightarrow\frac{OI}{A'B'}=\frac{F'O}{F'A'}\Leftrightarrow\frac{OI}{A'B'}=\frac{F'O}{OA'-OF'}\left(2\right)\)
Mà \(OI=AB\) nên \(\left(1\right)=\left(2\right)\)
\(\frac{OA}{OA'}=\frac{F'O}{OA'-OF'}\)
\(\Rightarrow OA'=48cm\)
\(\Rightarrow\frac{A'B'}{AB}=\frac{48}{16}=3\)