K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

1)

\(\overrightarrow{CA}=\left(1-m;m\right)\\ \overrightarrow{CB}=\left(-3-m;m+5\right)\)

Tam giác ABC vuông tại C\(\Rightarrow\overrightarrow{CA}.\overrightarrow{CB}=\overrightarrow{0}\Leftrightarrow\left(m-1\right)\left(m+3\right)+m\left(m+5\right)=0\)

Tìm m rồi thay vào C

2) \(\overrightarrow{AB}=\left(4;-3\right),\overrightarrow{AC}=\left(12;-9\right)\Rightarrow\overrightarrow{AC}=3\overrightarrow{AB}\Rightarrow\)A,B,C thẳng hàng

b)\(E\left(x;0\right)\)

\(\overrightarrow{AE}=\left(x+3;-4\right)\)

A, B, E thẳng hàng \(\Leftrightarrow4.\left(-4\right)=-3\left(x+3\right)\Leftrightarrow x=\dfrac{7}{3}\)

Vậy \(E\left(\dfrac{7}{3};0\right)\)

13 tháng 1 2022

tui mới lớp 6

13 tháng 1 2022

mày dám

28 tháng 3 2017

a)Ta có: AB→AB→= (4,-3)
AC→AC→= (12,-9)
412412=−3−9−3−9 \Rightarrow 3 điểm A, B, C thẳng hàng
b) Tọa độ điểm D(xDxD,yDyD)
A là trung điểm BD \Rightarrow xAxA=xD+xB2xD+xB2
\Rightarrow xDxD= -7
Tương tự, yDyD= 7
Vậy tọa độ D(-7,7)
c)Tọa độ điểm E(xExE,0)
AE→AE→= xExE+3, -4)
A, B,E thẳng hàng \Rightarrow xExE= ?!? (Áp dụng tương tự câu a)

28 tháng 3 2017

BàI 1:a) Để 3 điểm A,B,C thẳng hàng tì ta xét tỉ số, chúng = nhau suy ra A,B,C thẳng hàng(xét tỉ số giữa hoành độ của vecto AB vs AC so vs tung độ của vecto AB vs AC)
b)Theo công thức trung điểm thì sẽ tìm được tọa độ điểm D
c)Điểm E thuộc Ox thì E(xE,0).Mà 3 điểm A,B,E thẳng hàng nên xét tỉ số ta có : 4/xE+3 bằng -3/-4.Vậy tọa độ điểm E (7/3,0)
Bài 2:a)tho công thức trộng tâm trong SGK thì ta tính được tọa độ là(0,1)
b)ta có xC=1/3(xA+xB+xD), yC=1/3(yA+yB+yD).Vậy tọa độ điểm D(8,-11)
c) Để ABCE là hbh thì vecto AB= vecto EC nên ta có xAB=xEC,yAB=yEC.Vậy tọa độ của điểm E(-4,-5)
Bài 3:a)Ta xét tỉ số giữ 2 vecto AB và AC thấy chung khác nhau nên A,B,C không thẳng hàng.
b) vecto AD=3 vecto BC suy ra xD-xA=3(xC-xB),yD-yA=3(yC-yB).Vậy tọa độ điểm D(21,-14)
c) Điểm O(0,0). Do E là trọng tâm tam giác ABE nên: 0=1/3(xA+xB+xE),0=1/3(yA+yB+yE).Vậy E (2,-5)

11 tháng 8 2015

a) \(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\) . Vì \(\frac{2}{2}\ne\frac{2}{-2}\) nên \(\overrightarrow{AB};\overrightarrow{AC}\) không cùng phương => A; B; C không thẳng hàng

b) Gọi G là trọng tâm tam giác ABC => \(\begin{cases}x_G=\frac{x_A+x_B+x_C}{3}=\frac{-1+1+1}{3}=\frac{1}{3}\\y_G=\frac{y_A+y_B+y_C}{3}=\frac{1+3+\left(-1\right)}{3}=1\end{cases}\)=> G(1/3; 1)

c) ABCD là hình bình hành <=> \(\overrightarrow{AD}=\overrightarrow{BC}\Leftrightarrow\begin{cases}x_D-x_A=x_C-x_B\\y_D-y_A=y_C-y_B\end{cases}\) <=> \(\begin{cases}x_D+1=0\\y_D-1=-4\end{cases}\) <=> \(\begin{cases}x_D=-1\\y_D=-3\end{cases}\) Vậy D (-1;-3)

d)  \(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\)

=> \(\overrightarrow{AB}.\overrightarrow{AC}=2.2+2.\left(-2\right)=0\)  =>  \(\overrightarrow{AB};\overrightarrow{AC}\) vuông góc với nhau => tam giác ABC vuông tại A

Ta có: AB2 = 2+ 22 = 8 ; AC2 = 22 + (-2)2 = 8 => AB = AC => Tam giác ABC cân tại A

vậy...

e) Có thể đề của bạn là tam giác ABE vuông cân tại E  ( Khi đó giải điều kiện: EA = EB và vec tơ EA . Vec tơ EB = 0)

g) M nằm trên Ox => M (m; 0)

Tam giác OMA cân tại O <=> OM = OA  Hay OM2 = OA<=> m= (-1)+ 12 => m2 = 2 <=> m = \(\sqrt{2}\) hoặc m = -  \(\sqrt{2}\)

Vậy M (\(\sqrt{2}\); 0) ; M (-\(\sqrt{2}\); 0 )

15 tháng 12 2021

a) Gọi G(xG;yG)

xG=\(\dfrac{X_A+X_B+X_C}{3}=\dfrac{3-2+1}{3}\)=\(\dfrac{2}{3}\)

yG=\(\dfrac{Y_A+Y_B+Y_C}{3}=\dfrac{3+4+5}{3}=4\)

⇒G(\(\dfrac{2}{3};4\))