Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+y)^2 =a^2
x^2 +2xy +y^2 =a^2
x^2+y^2 =a^2-2xy =a^2 -2b
x^3 +y^3 = (x+y)(x^2 -xy +y^2)
=a(a^2-2b-b)
=a(a^2-3b)
=a^3- 3ab
(x^2 +y^2)^2=(a^2-2b)^2 ( cái này tính cho x^4 + y^4)
tương tự như câu đầu tiên
x^5+ y^5 (cái đó mình không biết)
a. ta có : \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\times\left(-6\right)=13\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3\times\left(-6\right)\times1=19\)
\(x^5+y^5=\left(x+y\right)\left[x^4-x^3y+x^2y^2-xy^3+y^4\right]\)
\(=\left(x+y\right)\left[\left(x^2+y^2\right)^2-x^2y^2-xy\left(x^2+y^2\right)\right]=1.\left(13^2-\left(-6\right)^2-\left(-6\right).13\right)=211\)
b.\(x^2+y^2=\left(x-y\right)^2+2xy=1+2\times6=13\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+6.3.1=19\)
\(x^5-y^5=\left(x-y\right)\left[\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\right]\)
\(=\left(x-y\right)\left[\left(x^2+y^2\right)^2-x^2y^2+xy\left(x^2+y^2\right)\right]=1.\left(13^2-6^2+6.13\right)=211\)
a) A=xy(x+y) - (x+y) = (x+y) (xy-1) = (-5+2) (-5.2 -1) =-3 . -11 = 33
b) B= xy (y-x)+2(x-y) =xy (y-x) - 2(y-x) =(y-x) (xy -2)= (-1/3 - -1/2) ( -1/2 . -1/3 -- 2)= 1/6 . -11/6 =-11/ 36
A = a( b + 2 ) + b( 2 + b )
= a( b + 2 ) + b( b + 2 )
= ( a + b )( b + 2 )
Với a = 2 ; b = 3
A = ( 2 + 3 )( 3 + 2 ) = 5.5 = 25
B = b2 + b + c( b + 1 )
= b( b + 1 ) + c( b + 1 )
= ( b + c )( b + 1 )
Với b = 1 ; c = 2
B = ( 1 + 2 )( 1 + 1 ) = 6
C = xy( x - y ) - 2x + 2y
= xy( x - y ) - 2( x - y )
= ( x - y )( xy - 2 )
Với xy = 8 ; x - y = 5
C = 5.( 8 - 2 ) = 30
D = x( x + y ) - xy( x + y )
= ( x + y )( x - xy )
= ( x + y )x( 1 - y )
Với x = 1 ; y = -5
D = ( 1 - 5 ).1.[ 1 - ( -5 ) ] = -24
\(\begin{array}{l}T + H = 3{x^2}y - 2x{y^2} + xy + \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy - 2{x^2}y + 3x{y^2} + 1\\ = \left( {3{x^2}y - 2{x^2}y} \right) + \left( { - 2x{y^2} + 3x{y^2}} \right) + xy + 1\\ = {x^2}y + x{y^2} + xy + 1\\T - H = 3{x^2}y - 2x{y^2} + xy - \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy + 2{x^2}y - 3x{y^2} - 1\\ = \left( {3{x^2}y + 2{x^2}y} \right) + \left( { - 2x{y^2} - 3x{y^2}} \right) + xy - 1\\ = 5{x^2}y - 5x{y^2} + xy - 1\end{array}\)
Chọn B.
Áp dụng hằng đẳng thức a2 - b2 = ( a - b ) ( a + b) ta đc:
a)\(\left(x^2+x+1\right)\left(x^2-x-1\right)\)
\(=\left(x^2\right)^2-\left[\left(x+1\right)\right]^2\)
\(=x^4-\left(x^2+2x+1\right)\)
\(=x^4-x^2-2x-1\)
b)MK sửa đề nha\(\left(x^2+xy+y^2\right)\left(x^2-xy-y^2\right)\)
\(=\left(x^2\right)^2-\left[\left(xy+y^2\right)\right]^2\)
\(=x^4-x^2y^2-2xy^3-y^4\)